清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improved early outcome prediction by MRI-based 3D tumor volume assessment in patients with CNS lymphomas

医学 多元分析 队列 危险分层 内科学 多元统计 肿瘤科 放射科 机器学习 计算机科学
作者
Eliza Lauer,Ella Riegler,Jurik Mutter,Stefan Alig,Sabine Bleul,Julia Kuehn,Lavanya Ranganathan,Christian Klingler,Theo Demerath,Urs Würtemberger,Alexander Rau,Jakob Weiß,Michel Eisenblaetter,Fabian Bamberg,Marco Prinz,Jürgen Finke,Justus Duyster,Gerald Illerhaus,Maximilian Diehn,Ash A. Alizadeh,Elisabeth Schorb,Peter C. Reinacher,Florian Scherer
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (2): 374-386 被引量:1
标识
DOI:10.1093/neuonc/noad177
摘要

Abstract Background Central nervous system lymphomas (CNSL) display remarkable clinical heterogeneity, yet accurate prediction of outcomes remains challenging. The IPCG criteria are widely used in routine practice for the assessment of treatment response. However, the value of the IPCG criteria for ultimate outcome prediction is largely unclear, mainly due to the uncertainty in delineating complete from partial responses during and after treatment. Methods We explored various MRI features including semi-automated 3D tumor volume measurements at different disease milestones and their association with survival in 93 CNSL patients undergoing curative-intent treatment. Results At diagnosis, patients with more than 3 lymphoma lesions, periventricular involvement, and high 3D tumor volumes showed significantly unfavorable PFS and OS. At first interim MRI during treatment, the IPCG criteria failed to discriminate outcomes in responding patients. Therefore, we randomized these patients into training and validation cohorts to investigate whether 3D tumor volumetry could improve outcome prediction. We identified a 3D tumor volume reduction of ≥97% as the optimal threshold for risk stratification (=3D early response, 3D_ER). Applied to the validation cohort, patients achieving 3D_ER had significantly superior outcomes. In multivariate analyses, 3D_ER was independently prognostic of PFS and OS. Finally, we leveraged prognostic information from 3D MRI features and circulating biomarkers to build a composite metric that further improved outcome prediction in CNSL. Conclusions We developed semi-automated 3D tumor volume measurements as strong and independent early predictors of clinical outcomes in CNSL patients. These radiologic features could help improve risk stratification and help guide future treatment approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚倩倩发布了新的文献求助10
2秒前
自信放光芒~完成签到 ,获得积分10
2秒前
24K纯帅完成签到,获得积分10
6秒前
21秒前
24秒前
49秒前
58秒前
飞飞飞完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
1分钟前
Tong完成签到,获得积分0
1分钟前
1分钟前
Andrew发布了新的文献求助10
2分钟前
迅速的月光完成签到 ,获得积分10
2分钟前
2分钟前
庄怀逸完成签到 ,获得积分10
2分钟前
友好寻琴完成签到 ,获得积分10
2分钟前
郗妫完成签到,获得积分10
3分钟前
3分钟前
与共完成签到 ,获得积分10
3分钟前
美丽依波完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
林利芳完成签到 ,获得积分10
4分钟前
唔食鸡蛋黄完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
maodeshu应助科研通管家采纳,获得80
4分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
4分钟前
zz完成签到,获得积分10
4分钟前
沧海一粟米完成签到 ,获得积分10
5分钟前
hb完成签到,获得积分10
5分钟前
5分钟前
闪闪的谷梦完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
zhdjj完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339019
求助须知:如何正确求助?哪些是违规求助? 2967044
关于积分的说明 8627946
捐赠科研通 2646480
什么是DOI,文献DOI怎么找? 1449239
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660162