Improved early outcome prediction by MRI-based 3D tumor volume assessment in patients with CNS lymphomas

医学 多元分析 队列 危险分层 内科学 多元统计 肿瘤科 放射科 机器学习 计算机科学
作者
Eliza Lauer,Ella Riegler,Jurik Mutter,Stefan Alig,Sabine Bleul,Julia Kuehn,Lavanya Ranganathan,Christian Klingler,Theo Demerath,Urs Würtemberger,Alexander Rau,Jakob Weiß,Michel Eisenblaetter,Fabian Bamberg,Marco Prinz,Jürgen Finke,Justus Duyster,Gerald Illerhaus,Maximilian Diehn,Ash A. Alizadeh,Elisabeth Schorb,Peter C. Reinacher,Florian Scherer
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (2): 374-386 被引量:1
标识
DOI:10.1093/neuonc/noad177
摘要

Abstract Background Central nervous system lymphomas (CNSL) display remarkable clinical heterogeneity, yet accurate prediction of outcomes remains challenging. The IPCG criteria are widely used in routine practice for the assessment of treatment response. However, the value of the IPCG criteria for ultimate outcome prediction is largely unclear, mainly due to the uncertainty in delineating complete from partial responses during and after treatment. Methods We explored various MRI features including semi-automated 3D tumor volume measurements at different disease milestones and their association with survival in 93 CNSL patients undergoing curative-intent treatment. Results At diagnosis, patients with more than 3 lymphoma lesions, periventricular involvement, and high 3D tumor volumes showed significantly unfavorable PFS and OS. At first interim MRI during treatment, the IPCG criteria failed to discriminate outcomes in responding patients. Therefore, we randomized these patients into training and validation cohorts to investigate whether 3D tumor volumetry could improve outcome prediction. We identified a 3D tumor volume reduction of ≥97% as the optimal threshold for risk stratification (=3D early response, 3D_ER). Applied to the validation cohort, patients achieving 3D_ER had significantly superior outcomes. In multivariate analyses, 3D_ER was independently prognostic of PFS and OS. Finally, we leveraged prognostic information from 3D MRI features and circulating biomarkers to build a composite metric that further improved outcome prediction in CNSL. Conclusions We developed semi-automated 3D tumor volume measurements as strong and independent early predictors of clinical outcomes in CNSL patients. These radiologic features could help improve risk stratification and help guide future treatment approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lx发布了新的文献求助10
刚刚
舒适念真发布了新的文献求助10
刚刚
沉默哈密瓜完成签到 ,获得积分10
1秒前
身处人海完成签到,获得积分10
1秒前
Singularity应助暴躁的安柏采纳,获得10
1秒前
Singularity应助暴躁的安柏采纳,获得10
1秒前
大模型应助皓月千里采纳,获得10
1秒前
1秒前
Jim完成签到,获得积分10
2秒前
尼亚吉拉发布了新的文献求助10
2秒前
sternen发布了新的文献求助30
2秒前
2秒前
2秒前
迪迦驳回了所所应助
3秒前
猪猪hero发布了新的文献求助10
3秒前
热心芷烟完成签到,获得积分10
3秒前
3秒前
敏捷的猪猪侠完成签到,获得积分10
4秒前
4秒前
4秒前
咕噜仔发布了新的文献求助50
4秒前
诚c发布了新的文献求助10
5秒前
5秒前
饭宝发布了新的文献求助10
6秒前
SciGPT应助大胆的期待采纳,获得10
6秒前
奋斗夏烟完成签到,获得积分20
6秒前
气泡水完成签到 ,获得积分10
6秒前
rosy完成签到,获得积分10
7秒前
rjy完成签到 ,获得积分10
7秒前
8秒前
沙111发布了新的文献求助10
8秒前
MADKAI发布了新的文献求助10
8秒前
9秒前
zhoull完成签到 ,获得积分10
9秒前
9秒前
9秒前
学术蝗虫发布了新的文献求助10
9秒前
aurora完成签到,获得积分10
10秒前
bopbopbaby发布了新的文献求助200
10秒前
sll完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678