化学
锌
抗菌活性
催化作用
环境友好型
纳米复合材料
核化学
抗菌剂
纳米颗粒
还原剂
组合化学
有机化学
细菌
材料科学
纳米技术
生物
遗传学
生态学
作者
Kasula Nagaraja,Ok Hwan
标识
DOI:10.1016/j.ijbiomac.2023.126788
摘要
In situ exfoliated natural polysaccharide Cordia myxa (CMX) is used to promote the utilization of zinc-oxide nanoparticles for eco-friendly catalytic hydrogenation of p-nitrophenol (p-NP) and microbial growth inhibition. Polysaccharide-mediated biosynthetic nanocomposite materials are interesting because they are cheap, green, and environmentally friendly. This study uses CMX gum as a bioreduction to produce multifunctional, environmentally friendly zinc-oxide nanocomposites (ZnO NPs). The process involves a low reaction time and temperature and utilizes CMX as a reducing and stabilizing agent. The structural, morphological, and optical properties of the CMX-ZnO nanocomposite were characterized. The biosynthetic CMX-ZnO NPs exhibited robust catalytic activity and recycling capacity for rapidly oxidizing hazardous p-NPs. The complete reduction of 4-NP to CMX-ZnO NPs in excess NaBH4 was achieved within 15 min, with recyclability and pseudo-first-order kinetics with a rate constant of 0.2571 min−1. Additionally, human colon cancer (HCT116) and 3T3L1 cell lines were remarkably sensitive to the cytotoxic effects of ZnO nanoparticles. CMX-ZnO NPs exhibited potent antibacterial properties against human pathogenic gram-positive and gram-negative bacteria (Bacillus, Salmonella, E. coli, and Pseudomonas aeruginosa) based on the zone of inhibition measured by the disc-diffusion method. The significant antibacterial activity of CMX-ZnO NPs can overcome the current limitations associated with removing water-soluble organic pollutants and microbiological contaminants for long-term environmental sustainability.
科研通智能强力驱动
Strongly Powered by AbleSci AI