清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of carbon emissions peak and carbon neutrality based on life cycle CO2 emissions in megacity building sector: Dynamic scenario simulations of Beijing

可再生能源 北京 碳中和 改装 环境科学 温室气体 碳纤维 蒙特卡罗方法 生命周期评估 偏移量(计算机科学) 碳补偿 环境工程 计算机科学 工程类 生态学 中国 数学 生产(经济) 法学 程序设计语言 电气工程 经济 宏观经济学 算法 统计 复合数 生物 结构工程 政治学
作者
Xin Li,Sinuo Li,Eldon R. Rene,Xiaoxiu Lun,Panyue Zhang,Weifang Ma
出处
期刊:Environmental Research [Elsevier]
卷期号:238: 117160-117160 被引量:24
标识
DOI:10.1016/j.envres.2023.117160
摘要

In order to design an optimal carbon peak and carbon neutralization pathway for the high-density building sector, a dynamic prediction model is established using system-dynamics coupled building life cycle carbon emission model (SD-BLCA) with consideration of future evolutionary trajectory and time constraints. The model is applied in Beijing using the SD-BLCA combined with scenario analysis and Monte Carlo methods to explore optimal trajectory for its building sector under 30-year timeframe. The results indicate that by increasing the proportion of renewable energy generation by 7% and retrofitting 60 million m2 of existing buildings, these two mature measures can offset the growth of carbon emissions and achieve the peak target by 2025. However, achieving carbon neutrality necessitates a shift from isolated technologies to a comprehensive net-zero emissions strategy. The study proposes a time roadmap that integrates a zero-carbon energy supply system and the carbon reduction measures of the whole life cycle. This strategy primarily relies on renewable sources to provide heat, power, and hydrogen, resulting in estimated reductions of 29.8 Mt, 28.1 Mt, and 0.7 Mt, respectively. Zero energy buildings, green buildings, and renovated buildings can reduce carbon emissions through their own energy-saving measures by 8.4, 18.2, and 11.8 kg/m2, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yar应助阿巴阿巴采纳,获得10
2秒前
Hello应助阿巴阿巴采纳,获得10
2秒前
852应助阿巴阿巴采纳,获得10
2秒前
领导范儿应助阿巴阿巴采纳,获得10
2秒前
深情安青应助阿巴阿巴采纳,获得10
2秒前
9秒前
Orange应助阿巴阿巴采纳,获得10
9秒前
李健应助阿巴阿巴采纳,获得10
9秒前
打打应助阿巴阿巴采纳,获得10
9秒前
传奇3应助阿巴阿巴采纳,获得10
9秒前
搜集达人应助阿巴阿巴采纳,获得10
9秒前
汉堡包应助阿巴阿巴采纳,获得10
9秒前
传奇3应助阿巴阿巴采纳,获得10
9秒前
wanci应助阿巴阿巴采纳,获得10
9秒前
丘比特应助阿巴阿巴采纳,获得10
9秒前
12秒前
慕青应助阿巴阿巴采纳,获得10
16秒前
Owen应助阿巴阿巴采纳,获得10
16秒前
16秒前
斯文败类应助阿巴阿巴采纳,获得10
16秒前
顾矜应助阿巴阿巴采纳,获得10
16秒前
16秒前
彭于晏应助阿巴阿巴采纳,获得10
17秒前
菠萝菠萝哒应助阿巴阿巴采纳,获得10
17秒前
劲秉应助阿巴阿巴采纳,获得10
17秒前
香蕉觅云应助阿巴阿巴采纳,获得10
17秒前
领导范儿应助阿巴阿巴采纳,获得10
17秒前
Levent发布了新的文献求助20
21秒前
Levent完成签到,获得积分10
32秒前
毛豆应助阿巴阿巴采纳,获得10
33秒前
所所应助阿巴阿巴采纳,获得10
33秒前
所所应助阿巴阿巴采纳,获得10
33秒前
大个应助阿巴阿巴采纳,获得10
33秒前
隐形曼青应助阿巴阿巴采纳,获得10
33秒前
所所应助阿巴阿巴采纳,获得10
33秒前
CipherSage应助阿巴阿巴采纳,获得10
33秒前
搜集达人应助阿巴阿巴采纳,获得10
33秒前
小二郎应助阿巴阿巴采纳,获得10
33秒前
bkagyin应助阿巴阿巴采纳,获得10
33秒前
Petrichor完成签到,获得积分10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059642
关于积分的说明 9067319
捐赠科研通 2750142
什么是DOI,文献DOI怎么找? 1509047
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896