Surface defect detection of civil structures using images: Review from data perspective

深度学习 计算机科学 数据科学 自动化 透视图(图形) 领域(数学) 人工智能 原始数据 系统工程 工程类 数学 机械工程 纯数学 程序设计语言
作者
Jingjing Guo,Pengkun Liu,Bo Xiao,Lu Deng,Qian Wang
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:158: 105186-105186 被引量:35
标识
DOI:10.1016/j.autcon.2023.105186
摘要

As civil structures age and deteriorate, it becomes crucial to conduct structural health monitoring (SHM) to ensure safety and timely maintenance. Surface defect detection plays a vital role in SHM by providing an initial assessment of structural conditions. Recent advancements in deep learning and automation techniques have led to extensive exploration of deep learning-based surface defect detection using images in the field of civil engineering. However, the performance of surface defect detectors heavily relies on the quality of data used for training, and data-related challenges can significantly impact the practicality of these detectors. These challenges encompass inherent and external negative characteristics of the raw data, including images and labels, which can significantly impact the performance of surface defect detectors. Unfortunately, there is a lack of systematic studies that review and discuss data-related challenges and their solutions in surface defect detection. To bridge this research gap, this study aims to review previous studies on deep learning-based surface defect detection using images, with a specific focus on the data perspective. A total of 237 journal papers were selected and critically analyzed in terms of deep learning tasks and application domains. The study summarizes the data-related challenges that affect the performance and applicability of surface defect detectors, along with the corresponding solutions proposed in the selected papers. While various methods have been proposed to address these challenges, limitations still exist and need to be addressed in future research. To guide future studies in addressing data-related issues, a data management framework is designed, encompassing fixed factors and variable factors derived from the selected papers. Furthermore, the study provides suggestions for future research opportunities to offer insights to researchers in the field of deep learning-based surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定诗柳完成签到,获得积分10
1秒前
火星上的若颜完成签到,获得积分10
1秒前
2秒前
CipherSage应助太阳地里1911采纳,获得10
4秒前
隐形曼青应助KK采纳,获得10
4秒前
赘婿应助11111采纳,获得10
5秒前
勤劳怜寒发布了新的文献求助20
6秒前
辛勤的刺猬完成签到 ,获得积分10
7秒前
泡沫发布了新的文献求助10
7秒前
学习的苹果完成签到,获得积分10
7秒前
乐乐应助搞怪小兔子采纳,获得10
8秒前
科研通AI5应助茫茫采纳,获得10
8秒前
田様应助阔达映之采纳,获得10
9秒前
10秒前
勤劳怜寒完成签到,获得积分20
13秒前
13秒前
行踪完成签到 ,获得积分10
13秒前
kingwill应助泡沫采纳,获得20
16秒前
16秒前
打打应助泡沫采纳,获得10
16秒前
16秒前
你怎么睡得着觉完成签到,获得积分10
18秒前
feng1235发布了新的文献求助10
19秒前
19秒前
19秒前
小柒完成签到 ,获得积分10
23秒前
王提发布了新的文献求助10
23秒前
23秒前
舒服的曼云完成签到,获得积分10
24秒前
24秒前
yan完成签到,获得积分10
24秒前
木木完成签到,获得积分10
24秒前
茫茫发布了新的文献求助10
26秒前
28秒前
yy发布了新的文献求助10
29秒前
30秒前
勤劳桐完成签到 ,获得积分10
30秒前
許1111发布了新的文献求助10
31秒前
yan发布了新的文献求助10
32秒前
qinyi完成签到 ,获得积分10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812565
求助须知:如何正确求助?哪些是违规求助? 3357082
关于积分的说明 10385222
捐赠科研通 3074312
什么是DOI,文献DOI怎么找? 1688689
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986