Surface defect detection of civil structures using images: Review from data perspective

深度学习 计算机科学 数据科学 自动化 透视图(图形) 领域(数学) 人工智能 原始数据 系统工程 工程类 数学 机械工程 纯数学 程序设计语言
作者
Jingjing Guo,Pengkun Liu,Bo Xiao,Lu Deng,Qian Wang
出处
期刊:Automation in Construction [Elsevier]
卷期号:158: 105186-105186 被引量:13
标识
DOI:10.1016/j.autcon.2023.105186
摘要

As civil structures age and deteriorate, it becomes crucial to conduct structural health monitoring (SHM) to ensure safety and timely maintenance. Surface defect detection plays a vital role in SHM by providing an initial assessment of structural conditions. Recent advancements in deep learning and automation techniques have led to extensive exploration of deep learning-based surface defect detection using images in the field of civil engineering. However, the performance of surface defect detectors heavily relies on the quality of data used for training, and data-related challenges can significantly impact the practicality of these detectors. These challenges encompass inherent and external negative characteristics of the raw data, including images and labels, which can significantly impact the performance of surface defect detectors. Unfortunately, there is a lack of systematic studies that review and discuss data-related challenges and their solutions in surface defect detection. To bridge this research gap, this study aims to review previous studies on deep learning-based surface defect detection using images, with a specific focus on the data perspective. A total of 237 journal papers were selected and critically analyzed in terms of deep learning tasks and application domains. The study summarizes the data-related challenges that affect the performance and applicability of surface defect detectors, along with the corresponding solutions proposed in the selected papers. While various methods have been proposed to address these challenges, limitations still exist and need to be addressed in future research. To guide future studies in addressing data-related issues, a data management framework is designed, encompassing fixed factors and variable factors derived from the selected papers. Furthermore, the study provides suggestions for future research opportunities to offer insights to researchers in the field of deep learning-based surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pengjiejie完成签到,获得积分10
1秒前
1秒前
2秒前
千夜发布了新的文献求助30
2秒前
3秒前
wp4455777发布了新的文献求助10
3秒前
bvhj发布了新的文献求助10
3秒前
666完成签到,获得积分10
4秒前
4秒前
honghong完成签到 ,获得积分20
4秒前
调研昵称发布了新的文献求助10
5秒前
细心雨兰发布了新的文献求助10
5秒前
bvhj完成签到,获得积分10
7秒前
Lili发布了新的文献求助10
8秒前
太阳完成签到,获得积分10
9秒前
开朗发卡完成签到,获得积分10
9秒前
潇洒毛应助dolphin采纳,获得10
10秒前
xink完成签到,获得积分10
11秒前
狗大王完成签到,获得积分10
11秒前
美君完成签到 ,获得积分10
11秒前
啦啦啦完成签到,获得积分10
11秒前
13秒前
14秒前
14秒前
lrc完成签到,获得积分10
15秒前
maxSpr完成签到,获得积分10
17秒前
卡拉米完成签到,获得积分10
18秒前
慈祥的帽子完成签到,获得积分10
18秒前
郑小七完成签到,获得积分10
18秒前
Miller应助BLDYT采纳,获得20
18秒前
charles发布了新的文献求助10
19秒前
19秒前
Ava应助Lili采纳,获得10
20秒前
20秒前
20秒前
20秒前
开心应助Alvin采纳,获得10
20秒前
感动归尘发布了新的文献求助30
21秒前
HAPPY发布了新的文献求助10
21秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655