Monitoring drought induced photosynthetic and fluorescent variations of potatoes by visible and thermal imaging analysis

多光谱图像 气孔导度 偏最小二乘回归 光合作用 光系统II 蒸腾作用 生物系统 可见光谱 数学 环境科学 化学 人工智能 植物 计算机科学 物理 统计 光学 生物
作者
Sashuang Sun,Liehuang Zhu,Ning Liang,Yiyin He,Zhao Wang,Si Chen,Jiangang Liu,Haiyan Cen,Yong He,Zhenjiang Zhou
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108433-108433
标识
DOI:10.1016/j.compag.2023.108433
摘要

Accurate determination of photosynthetic parameters is critical to evaluate crop physiological and growth processes. This study aimed to estimate photosynthetic and fluorescence variables of potatoes by visible and thermal imaging fusion analysis. Two-years pot experiments were conducted in a climate chamber with different irrigation treatments. Multi-modal image features of crop canopy were extracted from both visible and thermal images by color component extraction, discrete wavelet transformation, gray level co-occurrence matrix, and local binary pattern algorithms. Extracted features were subsequently employed to build partial least squares regression (PLSR) models for estimation of transpiration rate (Tr), net photosynthetic rate (An), stomatal conductance (GSW), electron transport rate (ETR), and maximum photochemical efficiency under Photosystem II (Fv'/Fm'). Results showed that Mask Region-Convolutional Neural Network (Mask R-CNN) performed satisfactorily on canopy segmentation with intersection over union of 87.29 % and 86.93 % in visible and thermal images, respectively. Three different types of models that either using only visible image features (PLSRRGB), or only thermal image features (PLSRT) or both visible and thermal image features (PLSRRGB+T) as inputs were compared. Results showed that PLSRRGB+T had superior estimation performance in terms of R2 and RMSE. It achieved the highest R2 of 0.85 with An and the lowest R2 of 0.66 with GSW for Zhongshu 5, while it had the highest R2 of 0.86 with Fv'/Fm', and the lowest R2 of 0.71 with Tr and An for D681. This implied the potential of visible and thermal image-driven method for quick and accurate estimation of photosynthetic traits of crops grown in controlled environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助柚子采纳,获得10
1秒前
chai发布了新的文献求助10
2秒前
2秒前
孙李貌发布了新的文献求助10
2秒前
小二郎应助zjy采纳,获得10
3秒前
BowieHuang应助末日的阳光采纳,获得10
3秒前
852应助宁灭龙采纳,获得20
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
4秒前
hh完成签到,获得积分10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
amberzyc应助科研通管家采纳,获得20
4秒前
zyjwf发布了新的文献求助10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
zhonglv7应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得30
4秒前
清心淡如水完成签到 ,获得积分10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
慕青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
李健应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得30
5秒前
无花果应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
peggypan108发布了新的文献求助10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592