Development of cat-GRRM/MC/MD method for the simulation of cross-linked network structure formation with molecular autocatalysis

自催化 环氧树脂 催化作用 分子动力学 活化能 分子 反应机理 固化(化学) 聚合物 化学反应 化学 材料科学 计算化学 反应速率 化学物理 物理化学 高分子化学 有机化学
作者
Yingxiao Xi,H. Fukuzawa,Shoji Fukunaga,Gota Kikugawa,Yinbo Zhao,Yoshiaki Kawagoe,Tomonaga Okabe,Naoki Kishimoto
出处
期刊:Molecular Catalysis [Elsevier]
卷期号:552: 113680-113680 被引量:2
标识
DOI:10.1016/j.mcat.2023.113680
摘要

Epoxy resins, which are common matrices in carbon fibre-reinforced plastics, are derived from the curing of epoxy amines. Molecular dynamics (MD) simulations are commonly used to model the physical properties of such network polymers, but they do not account for chemical reactions. Quantum chemical (QC) calculations can elucidate reaction mechanisms and energies but are not suitable for models with thousands of atoms. To address these limitations, in this study, we developed a new method, cat-GRRM/MC/MD, that combines QC calculations in the Global Reaction Route Mapping (GRRM) program with reaction simulations involved in MD simulation methods. This approach allows the simulation of reaction pathways in which proton donor molecules such as alcohols and amines act as molecular catalysts (autocatalysis), and the reaction kinetics are realised in a Monte Carlo (MC) manner. Our results show that autocatalysis significantly reduces the activation energy of the epoxy resin reaction, bringing the calculated data closer to the experimental results. When these quantum chemical calculations were incorporated into MD simulations, it was found that the activation energy influenced the crosslinking results. Models including catalysis led to network polymers with larger carbon skeletons, and physical properties such as the Young's modulus and glass transition temperature become closer to experimental results. This study not only deepens our understanding of the mechanism of the self-catalytic reaction of epoxy resins but also provides a new tool for accurately simulating the performance of epoxy resins, thus enabling more precise control of their properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助吴咪采纳,获得10
刚刚
1秒前
思源应助活泼的平灵采纳,获得10
1秒前
曾经如是发布了新的文献求助30
2秒前
3秒前
蓓蓓0303发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
摸鱼人完成签到,获得积分10
4秒前
浮游应助非而者厚采纳,获得10
5秒前
jj完成签到,获得积分10
5秒前
Zx_1993应助香菜采纳,获得10
6秒前
若水完成签到,获得积分0
6秒前
7秒前
飞云完成签到,获得积分10
7秒前
曾经如是完成签到,获得积分10
9秒前
11秒前
霜糖完成签到,获得积分10
12秒前
14秒前
高大厉完成签到 ,获得积分10
15秒前
科研雪完成签到,获得积分10
16秒前
冷漠的布丁完成签到,获得积分10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
cdercder应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
cdercder应助科研通管家采纳,获得20
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
xiao发布了新的文献求助10
17秒前
彩色尔珍发布了新的文献求助10
18秒前
18秒前
今后应助平常寄翠采纳,获得10
22秒前
科研通AI6应助科研雪采纳,获得10
23秒前
梓泽丘墟发布了新的文献求助100
23秒前
打打应助7676采纳,获得10
25秒前
llz发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419502
求助须知:如何正确求助?哪些是违规求助? 4534740
关于积分的说明 14146552
捐赠科研通 4451384
什么是DOI,文献DOI怎么找? 2441744
邀请新用户注册赠送积分活动 1433305
关于科研通互助平台的介绍 1410587