亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ultrahigh intermediate-temperature strength and good tensile plasticity in chemically complex intermetallic alloys via lamellar architectures

材料科学 金属间化合物 极限抗拉强度 晶界 层状结构 变形机理 可塑性 高温合金 位错 变形(气象学) 拉伸试验 冶金 复合材料 微观结构 合金
作者
Bo Xiao,Jun Zhang,Shaofei Liu,Yinghao Zhou,Jiang Ju,Ji‐Jung Kai,Yilu Zhao,Xiawei Yang,Lianyong Xu,Shijun Zhao,Tao Yang
出处
期刊:Acta Materialia [Elsevier]
卷期号:262: 119459-119459 被引量:15
标识
DOI:10.1016/j.actamat.2023.119459
摘要

As a newly emerged class of materials, chemically complex intermetallic alloys (CCIMAs) with exceptional thermal and mechanical properties are a promising candidate for high-temperature structural use. However, serious intergranular embrittlement at intermediate temperatures (600∼800°C) is frequently found in those CCIMAs, obstructing their large-scale engineering applications. In this study, through deliberately tailoring thermomechanical processing, we designed a lamellar-structured (LS) L12-type Co-Ni-Al-Ti-Ta-Nb-B-based CCIMA that effectively overcomes this critical issue. The LS-CCIMA exhibits an excellent yield strength (YS) of ∼1.0 GPa with a large tensile elongation of ∼17% at room temperature. More prominently, it also presents an anomalous YS of ∼1.2 GPa combined with an acceptable tensile elongation of ∼10% at intermediate temperatures ranging from 600 to 800°C, outperforming those of many other simple ordered intermetallics and conventional superalloys. Such superb immediate-temperature strengths primarily originate from the high anti-phase boundary energy caused by the addition of multiple alloying elements (Ti, Ta, and Nb) and the pile-ups of geometrically necessary dislocations. Moreover, we attribute the acceptable tensile plasticity to the increased plastic deformation capacities from the activation of various deformation-induced substructures (e.g., dislocation pairs at 600°C and superlattice intrinsic stacking faults at 800°C) and the inhibiting mechanisms of the lamellar structures on oxygen-induced grain boundary damage and microcrack's propagation. This work provides a new pathway for the innovative design of strong-yet-ductile heat-resistant CCIMAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
卡卡发布了新的文献求助10
6秒前
溪灵发布了新的文献求助20
19秒前
啊啊啊完成签到 ,获得积分10
20秒前
27秒前
玉玉完成签到 ,获得积分20
41秒前
量子星尘发布了新的文献求助10
43秒前
ttkx完成签到,获得积分10
46秒前
53秒前
杨光发布了新的文献求助10
57秒前
江流儿完成签到 ,获得积分10
1分钟前
SciGPT应助杨光采纳,获得10
1分钟前
1分钟前
1分钟前
lcw1998完成签到 ,获得积分10
1分钟前
无限青槐发布了新的文献求助10
1分钟前
小蘑菇应助jinan采纳,获得10
1分钟前
溪灵完成签到,获得积分10
1分钟前
斯文败类应助shun采纳,获得10
1分钟前
阿俊完成签到 ,获得积分10
1分钟前
fandan完成签到 ,获得积分10
1分钟前
Eileen完成签到 ,获得积分0
1分钟前
香菜张完成签到,获得积分10
1分钟前
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助morena采纳,获得10
2分钟前
寻道图强完成签到,获得积分0
2分钟前
圈哥完成签到,获得积分10
2分钟前
pegasus0802完成签到,获得积分10
2分钟前
Ava应助无限青槐采纳,获得10
2分钟前
忧郁的火车完成签到,获得积分10
2分钟前
朝朝暮夕完成签到 ,获得积分10
2分钟前
闪闪的晓丝完成签到 ,获得积分10
2分钟前
酷波er应助观澜采纳,获得10
3分钟前
zqq完成签到,获得积分0
3分钟前
大个应助Ruby采纳,获得10
3分钟前
尘远知山静完成签到 ,获得积分10
3分钟前
bkagyin应助干羞花采纳,获得10
3分钟前
3分钟前
干羞花发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622199
求助须知:如何正确求助?哪些是违规求助? 4707132
关于积分的说明 14938831
捐赠科研通 4769058
什么是DOI,文献DOI怎么找? 2552198
邀请新用户注册赠送积分活动 1514325
关于科研通互助平台的介绍 1475038