Ultrahigh intermediate-temperature strength and good tensile plasticity in chemically complex intermetallic alloys via lamellar architectures

材料科学 金属间化合物 极限抗拉强度 晶界 层状结构 变形机理 可塑性 高温合金 位错 变形(气象学) 拉伸试验 冶金 复合材料 微观结构 合金
作者
Bo Xiao,Jun Zhang,Shaofei Liu,Yinghao Zhou,Jiang Ju,Ji‐Jung Kai,Yilu Zhao,Xiawei Yang,Lianyong Xu,Shijun Zhao,Tao Yang
出处
期刊:Acta Materialia [Elsevier]
卷期号:262: 119459-119459 被引量:12
标识
DOI:10.1016/j.actamat.2023.119459
摘要

As a newly emerged class of materials, chemically complex intermetallic alloys (CCIMAs) with exceptional thermal and mechanical properties are a promising candidate for high-temperature structural use. However, serious intergranular embrittlement at intermediate temperatures (600∼800°C) is frequently found in those CCIMAs, obstructing their large-scale engineering applications. In this study, through deliberately tailoring thermomechanical processing, we designed a lamellar-structured (LS) L12-type Co-Ni-Al-Ti-Ta-Nb-B-based CCIMA that effectively overcomes this critical issue. The LS-CCIMA exhibits an excellent yield strength (YS) of ∼1.0 GPa with a large tensile elongation of ∼17% at room temperature. More prominently, it also presents an anomalous YS of ∼1.2 GPa combined with an acceptable tensile elongation of ∼10% at intermediate temperatures ranging from 600 to 800°C, outperforming those of many other simple ordered intermetallics and conventional superalloys. Such superb immediate-temperature strengths primarily originate from the high anti-phase boundary energy caused by the addition of multiple alloying elements (Ti, Ta, and Nb) and the pile-ups of geometrically necessary dislocations. Moreover, we attribute the acceptable tensile plasticity to the increased plastic deformation capacities from the activation of various deformation-induced substructures (e.g., dislocation pairs at 600°C and superlattice intrinsic stacking faults at 800°C) and the inhibiting mechanisms of the lamellar structures on oxygen-induced grain boundary damage and microcrack's propagation. This work provides a new pathway for the innovative design of strong-yet-ductile heat-resistant CCIMAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小呆瓜应助陶l采纳,获得20
刚刚
超级念烟发布了新的文献求助10
刚刚
123zyx发布了新的文献求助10
1秒前
2秒前
gu发布了新的文献求助30
2秒前
tt完成签到,获得积分20
3秒前
3秒前
脑洞疼应助mbf采纳,获得10
4秒前
LRxxx完成签到 ,获得积分10
4秒前
SciGPT应助Mimi采纳,获得10
5秒前
5秒前
6秒前
linxue发布了新的文献求助10
6秒前
6秒前
7秒前
姚女士完成签到,获得积分10
7秒前
良辰应助19采纳,获得10
7秒前
节节高完成签到,获得积分10
8秒前
9秒前
叶子的叶发布了新的文献求助10
9秒前
10秒前
节节高发布了新的文献求助10
12秒前
12秒前
13秒前
为何丶完成签到,获得积分10
13秒前
缪忆寒完成签到,获得积分20
13秒前
14秒前
ccalvintan发布了新的文献求助20
14秒前
元复天发布了新的文献求助10
14秒前
今后应助哈哈采纳,获得10
14秒前
大个应助我门牙有缝采纳,获得10
17秒前
chenxin发布了新的文献求助10
17秒前
chenchenchen发布了新的文献求助10
18秒前
小明的食堂完成签到,获得积分10
18秒前
优秀不愁发布了新的文献求助10
18秒前
CodeCraft应助快哒哒哒采纳,获得10
19秒前
19秒前
小邢一定行完成签到,获得积分10
19秒前
英姑应助学术达人采纳,获得10
19秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310444
求助须知:如何正确求助?哪些是违规求助? 2943341
关于积分的说明 8514145
捐赠科研通 2618574
什么是DOI,文献DOI怎么找? 1431211
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649615