Ultrahigh intermediate-temperature strength and good tensile plasticity in chemically complex intermetallic alloys via lamellar architectures

材料科学 金属间化合物 极限抗拉强度 晶界 层状结构 变形机理 可塑性 高温合金 位错 变形(气象学) 拉伸试验 冶金 复合材料 微观结构 合金
作者
Bo Xiao,Jun Zhang,Shaofei Liu,Yinghao Zhou,Jiang Ju,Ji‐Jung Kai,Yilu Zhao,Xiawei Yang,Lianyong Xu,Shijun Zhao,Tao Yang
出处
期刊:Acta Materialia [Elsevier]
卷期号:262: 119459-119459 被引量:15
标识
DOI:10.1016/j.actamat.2023.119459
摘要

As a newly emerged class of materials, chemically complex intermetallic alloys (CCIMAs) with exceptional thermal and mechanical properties are a promising candidate for high-temperature structural use. However, serious intergranular embrittlement at intermediate temperatures (600∼800°C) is frequently found in those CCIMAs, obstructing their large-scale engineering applications. In this study, through deliberately tailoring thermomechanical processing, we designed a lamellar-structured (LS) L12-type Co-Ni-Al-Ti-Ta-Nb-B-based CCIMA that effectively overcomes this critical issue. The LS-CCIMA exhibits an excellent yield strength (YS) of ∼1.0 GPa with a large tensile elongation of ∼17% at room temperature. More prominently, it also presents an anomalous YS of ∼1.2 GPa combined with an acceptable tensile elongation of ∼10% at intermediate temperatures ranging from 600 to 800°C, outperforming those of many other simple ordered intermetallics and conventional superalloys. Such superb immediate-temperature strengths primarily originate from the high anti-phase boundary energy caused by the addition of multiple alloying elements (Ti, Ta, and Nb) and the pile-ups of geometrically necessary dislocations. Moreover, we attribute the acceptable tensile plasticity to the increased plastic deformation capacities from the activation of various deformation-induced substructures (e.g., dislocation pairs at 600°C and superlattice intrinsic stacking faults at 800°C) and the inhibiting mechanisms of the lamellar structures on oxygen-induced grain boundary damage and microcrack's propagation. This work provides a new pathway for the innovative design of strong-yet-ductile heat-resistant CCIMAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Denny发布了新的文献求助10
刚刚
kbkyvuy发布了新的文献求助10
刚刚
cheng完成签到,获得积分10
1秒前
1秒前
十一发布了新的文献求助10
1秒前
向日葵发布了新的文献求助10
1秒前
1秒前
原本发布了新的文献求助10
1秒前
Aloha发布了新的文献求助30
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
漠雨寒灯发布了新的文献求助10
3秒前
3秒前
张兴博发布了新的文献求助30
3秒前
TONONO完成签到,获得积分10
3秒前
KAER完成签到,获得积分20
4秒前
无情的函发布了新的文献求助10
4秒前
Yannis完成签到 ,获得积分10
4秒前
阳光怀亦完成签到,获得积分10
5秒前
5秒前
5秒前
华仔应助tk采纳,获得30
6秒前
6秒前
Ayiiiii发布了新的文献求助10
7秒前
7秒前
lixiangrui110发布了新的文献求助10
7秒前
luluzheng应助wkktx采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
guzhfia发布了新的文献求助10
8秒前
小林子完成签到 ,获得积分10
8秒前
9秒前
刘zx完成签到,获得积分10
9秒前
斯文败类应助小巧的凝荷采纳,获得10
9秒前
archerwangms发布了新的文献求助10
9秒前
10秒前
我爱科研发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274