Brain MRI in Progressive Supranuclear Palsy with Richardson's Syndrome and Variant Phenotypes

进行性核上麻痹 磁共振成像 支持向量机 医学 神经影像学 核医学 人工智能 心理学 放射科 病理 计算机科学 萎缩 神经科学
作者
Mike P. Wattjes,Hans‐Jürgen Huppertz,Nima Mahmoudi,Sophia Stöcklein,Sophia Rogozinski,Florian Wegner,Martin Klietz,Ivayla Apostolova,Johannes Levin,Sabrina Katzdobler,Carsten Buhmann,Andrea Quattrone,Georg Berding,Matthias Brendel,Henryk Barthel,Osama Sabri,Günter U. Höglinger,Ralph Buchert
出处
期刊:Movement Disorders [Wiley]
卷期号:38 (10): 1891-1900 被引量:5
标识
DOI:10.1002/mds.29527
摘要

Abstract Background Brain magnetic resonance imaging (MRI) is used to support the diagnosis of progressive supranuclear palsy (PSP). However, the value of visual descriptive, manual planimetric, automatic volumetric MRI markers and fully automatic categorization is unclear, particularly regarding PSP predominance types other than Richardson's syndrome (RS). Objectives To compare different visual reading strategies and automatic classification of T1‐weighted MRI for detection of PSP in a typical clinical cohort including PSP‐RS and (non‐RS) variant PSP (vPSP) patients. Methods Forty‐one patients (21 RS, 20 vPSP) and 46 healthy controls were included. Three readers using three strategies performed MRI analysis: exclusively visual reading using descriptive signs (hummingbird, morning‐glory, Mickey‐Mouse), visual reading supported by manual planimetry measures, and visual reading supported by automatic volumetry. Fully automatic classification was performed using a pre‐trained support vector machine (SVM) on the results of atlas‐based volumetry. Results All tested methods achieved higher specificity than sensitivity. Limited sensitivity was driven to large extent by false negative vPSP cases. Support by automatic volumetry resulted in the highest accuracy (75.1% ± 3.5%) among the visual strategies, but performed not better than the midbrain area (75.9%), the best single planimetric measure. Automatic classification by SVM clearly outperformed all other methods (accuracy, 87.4%), representing the only method to provide clinically useful sensitivity also in vPSP (70.0%). Conclusions Fully automatic classification of volumetric MRI measures using machine learning methods outperforms visual MRI analysis without and with planimetry or volumetry support, particularly regarding diagnosis of vPSP, suggesting the use in settings with a broad phenotypic PSP spectrum. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liaokaihui完成签到,获得积分10
刚刚
hjkk发布了新的文献求助30
1秒前
雪芜发布了新的文献求助10
2秒前
英姑应助哈哈哈采纳,获得30
2秒前
单纯的易文完成签到 ,获得积分10
2秒前
丘比特应助HHHHHN采纳,获得10
2秒前
3秒前
简单的妙梦完成签到 ,获得积分10
4秒前
winter发布了新的文献求助10
4秒前
5秒前
大牛应助文件撤销了驳回
5秒前
haohao发布了新的文献求助10
5秒前
研友_nEjYyZ发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
LI完成签到,获得积分10
7秒前
科研通AI2S应助lzz采纳,获得10
8秒前
生动初柳发布了新的文献求助10
8秒前
科研通AI2S应助hjkk采纳,获得10
9秒前
廿廿完成签到,获得积分10
9秒前
10秒前
嗳7发布了新的文献求助10
10秒前
小埋发布了新的文献求助20
10秒前
Eureka发布了新的文献求助10
11秒前
12秒前
star完成签到,获得积分20
12秒前
13秒前
永不停歇奈格里完成签到,获得积分10
13秒前
爱听歌娩完成签到,获得积分10
13秒前
玠岚完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
呼延含双发布了新的文献求助10
16秒前
16秒前
酷炫无声完成签到 ,获得积分10
17秒前
Eureka完成签到,获得积分10
18秒前
压缩应助lzz采纳,获得10
18秒前
天天快乐应助嗳7采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124236
求助须知:如何正确求助?哪些是违规求助? 2774582
关于积分的说明 7723198
捐赠科研通 2430090
什么是DOI,文献DOI怎么找? 1290917
科研通“疑难数据库(出版商)”最低求助积分说明 621960
版权声明 600297