Brain MRI in Progressive Supranuclear Palsy with Richardson's Syndrome and Variant Phenotypes

进行性核上麻痹 磁共振成像 支持向量机 医学 神经影像学 核医学 人工智能 心理学 放射科 病理 计算机科学 萎缩 神经科学
作者
Mike P. Wattjes,Hans‐Jürgen Huppertz,Nima Mahmoudi,Sophia Stöcklein,Sophia Rogozinski,Florian Wegner,Martin Klietz,Ivayla Apostolova,Johannes Levin,Sabrina Katzdobler,Carsten Buhmann,Andrea Quattrone,Georg Berding,Matthias Brendel,Henryk Barthel,Osama Sabri,Günter U. Höglinger,Ralph Buchert
出处
期刊:Movement Disorders [Wiley]
卷期号:38 (10): 1891-1900 被引量:5
标识
DOI:10.1002/mds.29527
摘要

Abstract Background Brain magnetic resonance imaging (MRI) is used to support the diagnosis of progressive supranuclear palsy (PSP). However, the value of visual descriptive, manual planimetric, automatic volumetric MRI markers and fully automatic categorization is unclear, particularly regarding PSP predominance types other than Richardson's syndrome (RS). Objectives To compare different visual reading strategies and automatic classification of T1‐weighted MRI for detection of PSP in a typical clinical cohort including PSP‐RS and (non‐RS) variant PSP (vPSP) patients. Methods Forty‐one patients (21 RS, 20 vPSP) and 46 healthy controls were included. Three readers using three strategies performed MRI analysis: exclusively visual reading using descriptive signs (hummingbird, morning‐glory, Mickey‐Mouse), visual reading supported by manual planimetry measures, and visual reading supported by automatic volumetry. Fully automatic classification was performed using a pre‐trained support vector machine (SVM) on the results of atlas‐based volumetry. Results All tested methods achieved higher specificity than sensitivity. Limited sensitivity was driven to large extent by false negative vPSP cases. Support by automatic volumetry resulted in the highest accuracy (75.1% ± 3.5%) among the visual strategies, but performed not better than the midbrain area (75.9%), the best single planimetric measure. Automatic classification by SVM clearly outperformed all other methods (accuracy, 87.4%), representing the only method to provide clinically useful sensitivity also in vPSP (70.0%). Conclusions Fully automatic classification of volumetric MRI measures using machine learning methods outperforms visual MRI analysis without and with planimetry or volumetry support, particularly regarding diagnosis of vPSP, suggesting the use in settings with a broad phenotypic PSP spectrum. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
文森特的向日葵完成签到,获得积分10
刚刚
2秒前
CipherSage应助Smf采纳,获得10
3秒前
文闵发布了新的文献求助20
3秒前
万能图书馆应助Arrow采纳,获得10
3秒前
熹林向日葵完成签到,获得积分10
3秒前
小二郎应助顾月采纳,获得10
3秒前
科研通AI6应助泠泠月上采纳,获得10
4秒前
tguczf完成签到,获得积分10
5秒前
小鱼儿完成签到 ,获得积分10
5秒前
华仔应助成就忆秋采纳,获得30
7秒前
zzzdx发布了新的文献求助10
7秒前
科研通AI6应助鳗鱼道天采纳,获得10
7秒前
7秒前
Nicole完成签到,获得积分10
8秒前
白衣轻叹发布了新的文献求助10
8秒前
8秒前
田様应助许墨的小蝴蝶采纳,获得10
9秒前
王书兰发布了新的文献求助10
9秒前
Anthocyanidin完成签到,获得积分10
10秒前
米龙完成签到,获得积分10
10秒前
天天快乐应助ENIX采纳,获得10
10秒前
大门神完成签到,获得积分10
11秒前
宁不言完成签到,获得积分10
12秒前
我是老大应助GIANTim采纳,获得20
12秒前
13秒前
13秒前
13秒前
14秒前
14秒前
16秒前
16秒前
砺行应助简简单单采纳,获得10
16秒前
安详的御姐完成签到,获得积分10
17秒前
17秒前
子勿语发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354650
求助须知:如何正确求助?哪些是违规求助? 4486721
关于积分的说明 13967578
捐赠科研通 4387283
什么是DOI,文献DOI怎么找? 2410289
邀请新用户注册赠送积分活动 1402711
关于科研通互助平台的介绍 1376487