亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning approaches for frailty detection, prediction and classification in elderly people: A systematic review

机器学习 人工智能 背景(考古学) 计算机科学 领域(数学) 医疗保健 多样性(控制论) 人口 系统回顾 数据科学 梅德林 医学 古生物学 纯数学 法学 经济 环境卫生 生物 经济增长 数学 政治学
作者
M. Leghissa,Álvaro Carrera,Carlos Á. Iglesias
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:178: 105172-105172 被引量:6
标识
DOI:10.1016/j.ijmedinf.2023.105172
摘要

Frailty in older people is a syndrome related to aging that is becoming increasingly common and problematic as the average age of the world population increases. Detecting frailty in its early stages or, even better, predicting its appearance can greatly benefit health in later years of life and save the healthcare system from high costs. Machine Learning models fit the need to develop a tool for supporting medical decision-making in detecting or predicting frailty.In this review, we followed the PRISMA methodology to conduct a systematic search of the most relevant Machine Learning models that have been developed so far in the context of frailty. We selected 41 publications and compared them according to their purpose, the type of dataset used, the target variables, and the results they obtained, highlighting their shortcomings and strengths.The variety of frailty definitions allows many problems to fall into this field, and it is often challenging to compare results due to the differences in target variables. The data types can be divided into gait data, usually collected with sensors, and medical records, often in the context of aging studies. The most common algorithms are well-known models available from every Machine Learning library. Only one study developed a new framework for frailty classification, and only two considered Explainability.This review highlights some gaps in the field of Machine Learning applied to the assessment and prediction of frailty, such as the need for a universal quantitative definition. It emphasizes the need for close collaboration between medical professionals and data scientists to unlock the potential of data collected in hospital and clinical settings. As a suggestion for future work, the area of Explainability, which is crucial for models in medicine and health care, was considered in very few studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jasam3514完成签到,获得积分10
2秒前
2秒前
15秒前
16秒前
19秒前
热情的安彤完成签到,获得积分20
29秒前
阿治完成签到 ,获得积分10
32秒前
39秒前
42秒前
酷波er应助leonzhou采纳,获得10
42秒前
开霁完成签到,获得积分10
46秒前
su发布了新的文献求助10
47秒前
研友_VZG7GZ应助123采纳,获得10
49秒前
55秒前
59秒前
义气的元柏完成签到 ,获得积分10
1分钟前
猫先生发布了新的文献求助10
1分钟前
cris完成签到 ,获得积分10
1分钟前
1分钟前
cris关注了科研通微信公众号
1分钟前
su完成签到,获得积分10
1分钟前
Tim完成签到 ,获得积分10
1分钟前
猫先生完成签到,获得积分10
1分钟前
1分钟前
zzcc发布了新的文献求助10
1分钟前
程风破浪发布了新的文献求助10
1分钟前
是我不得开心妍完成签到 ,获得积分10
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
尼古丁的味道完成签到 ,获得积分10
1分钟前
程风破浪完成签到,获得积分10
1分钟前
zzcc完成签到,获得积分10
1分钟前
科研通AI2S应助谦让冰真采纳,获得10
1分钟前
stay完成签到,获得积分20
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
stay发布了新的文献求助10
1分钟前
柳行天完成签到 ,获得积分10
1分钟前
高山七石发布了新的文献求助10
1分钟前
minya发布了新的文献求助30
1分钟前
希望天下0贩的0应助biubiu26采纳,获得30
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162265
求助须知:如何正确求助?哪些是违规求助? 2813284
关于积分的说明 7899578
捐赠科研通 2472567
什么是DOI,文献DOI怎么找? 1316446
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142