DCMF-AFNet: An anchor-free photovoltaic hot-spot fault detection network based on deformable context transformer and bi-branch multi-level feature fusion

计算机科学 故障检测与隔离 人工智能 特征提取 异常检测 变压器 模式识别(心理学) 背景(考古学) 特征(语言学) 光伏系统 工程类 电压 哲学 古生物学 电气工程 生物 语言学 执行机构
作者
Tian He,Shuai Hao,Xu Ma,Xizi Sun,Qiulin Zhao,Haobo Sun
出处
期刊:Solar Energy [Elsevier BV]
卷期号:263: 111904-111904 被引量:2
标识
DOI:10.1016/j.solener.2023.111904
摘要

In the process of photovoltaic hot-spot detection by thermal infrared sensors, the fault features cannot be effectively represented due to low pixel ratios and complex environmental interference, which makes it difficult for the detection network to accurately detect hot-spot faults. Therefore, an anchor-free photovoltaic hot-spot fault detection algorithm based on deformable context Transformer and bi-branch multi-level feature fusion is proposed. First, to improve the feature extraction ability of the backbone network for small-scale hot-spot faults, a deformable context Transformer module is constructed. By building an offset network in a multi-headed self-attention mechanism, dynamic and static context information with small-scale fault features can be explored from shallow feature maps. Second, to solve the problem of low target saliency due to the complex background interference, a bi-branch multi-level feature fusion module is designed to aggregate global and local multi-level features in a parallel fusion manner, enabling the detection network to rapidly focus on the fault target region in complex environments. Then, an anchor-free mechanism is introduced, and a dynamic task alignment prediction module is proposed to avoid feature misalignment in the classification and localization tasks and further improve the algorithm detection accuracy. Finally, to verify the superiority of the proposed network, seven detection algorithms are selected for comparison experiments. The experimental results show that the DCMF-AFNet network can accurately detect multi-scale hot-spot targets under various harsh conditions, and the detection accuracy can reach 87.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助JIE采纳,获得10
刚刚
1秒前
柳七完成签到,获得积分10
1秒前
叮当发布了新的文献求助10
2秒前
2秒前
2秒前
韵寒禾香完成签到,获得积分10
3秒前
哈哈哈完成签到,获得积分10
4秒前
传奇3应助激情的白枫采纳,获得10
4秒前
CYX发布了新的文献求助10
5秒前
6秒前
一样谦虚发布了新的文献求助10
6秒前
6秒前
ESC惠子子子子子完成签到 ,获得积分10
7秒前
7秒前
哈哈哈发布了新的文献求助10
7秒前
cyt9999完成签到,获得积分10
8秒前
菟丝子完成签到,获得积分10
10秒前
orixero应助魔王降临采纳,获得10
10秒前
HJJHJH发布了新的文献求助10
10秒前
Shacoooo发布了新的文献求助10
10秒前
11秒前
完美世界应助CYX采纳,获得10
12秒前
Orange应助丫丫采纳,获得10
13秒前
小齐爱科研完成签到,获得积分10
13秒前
yydragen应助HJJHJH采纳,获得50
14秒前
123完成签到,获得积分10
14秒前
Galaxyeye完成签到,获得积分10
14秒前
16秒前
JIE发布了新的文献求助10
16秒前
肥肥的呢完成签到,获得积分10
17秒前
SciGPT应助孔雨欣采纳,获得10
18秒前
19秒前
小Q完成签到,获得积分10
20秒前
jingyi完成签到,获得积分10
20秒前
科目三应助HJJHJH采纳,获得10
20秒前
21秒前
21秒前
23秒前
yuanyuanquanquan完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965976
求助须知:如何正确求助?哪些是违规求助? 3511306
关于积分的说明 11157319
捐赠科研通 3245873
什么是DOI,文献DOI怎么找? 1793215
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286