DCMF-AFNet: An anchor-free photovoltaic hot-spot fault detection network based on deformable context transformer and bi-branch multi-level feature fusion

计算机科学 故障检测与隔离 人工智能 特征提取 异常检测 变压器 模式识别(心理学) 背景(考古学) 特征(语言学) 光伏系统 工程类 电压 哲学 古生物学 电气工程 生物 语言学 执行机构
作者
Tian He,Shuai Hao,Xu Ma,Xizi Sun,Qiulin Zhao,Haobo Sun
出处
期刊:Solar Energy [Elsevier]
卷期号:263: 111904-111904 被引量:2
标识
DOI:10.1016/j.solener.2023.111904
摘要

In the process of photovoltaic hot-spot detection by thermal infrared sensors, the fault features cannot be effectively represented due to low pixel ratios and complex environmental interference, which makes it difficult for the detection network to accurately detect hot-spot faults. Therefore, an anchor-free photovoltaic hot-spot fault detection algorithm based on deformable context Transformer and bi-branch multi-level feature fusion is proposed. First, to improve the feature extraction ability of the backbone network for small-scale hot-spot faults, a deformable context Transformer module is constructed. By building an offset network in a multi-headed self-attention mechanism, dynamic and static context information with small-scale fault features can be explored from shallow feature maps. Second, to solve the problem of low target saliency due to the complex background interference, a bi-branch multi-level feature fusion module is designed to aggregate global and local multi-level features in a parallel fusion manner, enabling the detection network to rapidly focus on the fault target region in complex environments. Then, an anchor-free mechanism is introduced, and a dynamic task alignment prediction module is proposed to avoid feature misalignment in the classification and localization tasks and further improve the algorithm detection accuracy. Finally, to verify the superiority of the proposed network, seven detection algorithms are selected for comparison experiments. The experimental results show that the DCMF-AFNet network can accurately detect multi-scale hot-spot targets under various harsh conditions, and the detection accuracy can reach 87.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时有落花至完成签到,获得积分10
刚刚
刚刚
刚刚
雾见春完成签到 ,获得积分10
1秒前
22222应助科研通管家采纳,获得30
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
平淡向雁完成签到,获得积分10
1秒前
ding应助科研通管家采纳,获得10
1秒前
wanci应助xiaoliang采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
思源应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
谢大喵应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
魔幻的千山完成签到,获得积分10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Zx_1993应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
ouLniM完成签到 ,获得积分10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
3秒前
CipherSage应助顺心的夜香采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得200
3秒前
3秒前
3秒前
七七八发布了新的文献求助10
4秒前
范小雨发布了新的文献求助10
4秒前
lj完成签到,获得积分10
4秒前
5秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340292
求助须知:如何正确求助?哪些是违规求助? 4476835
关于积分的说明 13932933
捐赠科研通 4372659
什么是DOI,文献DOI怎么找? 2402478
邀请新用户注册赠送积分活动 1395350
关于科研通互助平台的介绍 1367444