DCMF-AFNet: An anchor-free photovoltaic hot-spot fault detection network based on deformable context transformer and bi-branch multi-level feature fusion

计算机科学 故障检测与隔离 人工智能 特征提取 异常检测 变压器 模式识别(心理学) 背景(考古学) 特征(语言学) 光伏系统 工程类 电压 哲学 古生物学 电气工程 生物 语言学 执行机构
作者
Tian He,Shuai Hao,Xu Ma,Xizi Sun,Qiulin Zhao,Haobo Sun
出处
期刊:Solar Energy [Elsevier]
卷期号:263: 111904-111904 被引量:2
标识
DOI:10.1016/j.solener.2023.111904
摘要

In the process of photovoltaic hot-spot detection by thermal infrared sensors, the fault features cannot be effectively represented due to low pixel ratios and complex environmental interference, which makes it difficult for the detection network to accurately detect hot-spot faults. Therefore, an anchor-free photovoltaic hot-spot fault detection algorithm based on deformable context Transformer and bi-branch multi-level feature fusion is proposed. First, to improve the feature extraction ability of the backbone network for small-scale hot-spot faults, a deformable context Transformer module is constructed. By building an offset network in a multi-headed self-attention mechanism, dynamic and static context information with small-scale fault features can be explored from shallow feature maps. Second, to solve the problem of low target saliency due to the complex background interference, a bi-branch multi-level feature fusion module is designed to aggregate global and local multi-level features in a parallel fusion manner, enabling the detection network to rapidly focus on the fault target region in complex environments. Then, an anchor-free mechanism is introduced, and a dynamic task alignment prediction module is proposed to avoid feature misalignment in the classification and localization tasks and further improve the algorithm detection accuracy. Finally, to verify the superiority of the proposed network, seven detection algorithms are selected for comparison experiments. The experimental results show that the DCMF-AFNet network can accurately detect multi-scale hot-spot targets under various harsh conditions, and the detection accuracy can reach 87.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
传奇3应助灵巧的大开采纳,获得10
刚刚
不二完成签到 ,获得积分10
1秒前
欢呼葶关注了科研通微信公众号
3秒前
3秒前
祖国的花朵完成签到,获得积分10
4秒前
852应助Keller采纳,获得10
4秒前
5秒前
汉堡包应助田国兵采纳,获得10
5秒前
6秒前
细胞疗法搬砖工完成签到,获得积分10
6秒前
小马甲应助tttt采纳,获得10
7秒前
rues011发布了新的文献求助10
8秒前
JamesPei应助橙子采纳,获得10
9秒前
渣兔发布了新的文献求助10
10秒前
11秒前
freyaaaaa应助zxcvbnm采纳,获得100
12秒前
orixero应助温暖的芷烟采纳,获得10
13秒前
唠叨的富发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
赘婿应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
七慕凉应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
17应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
zero完成签到,获得积分10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
烟花应助完美春天采纳,获得10
18秒前
打打应助tejing1158采纳,获得10
19秒前
ZZZ完成签到 ,获得积分10
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493054
求助须知:如何正确求助?哪些是违规求助? 4590959
关于积分的说明 14433133
捐赠科研通 4523660
什么是DOI,文献DOI怎么找? 2478443
邀请新用户注册赠送积分活动 1463458
关于科研通互助平台的介绍 1436118