Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning–Based Models

乳腺癌 癌症 计算机科学 人工智能 机器学习 医学 内科学
作者
Hasna El Haji,Amine Souadka,Bhavik N. Patel,Nada Sbihi,Gokul Ramasamy,Bhavika K. Patel,Mounir Ghogho,Imon Banerjee
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (7) 被引量:7
标识
DOI:10.1200/cci.23.00049
摘要

PURPOSE Selection of appropriate adjuvant therapy to ultimately reduce the risk of breast cancer (BC) recurrence is a challenge for medical oncologists. Several automated risk prediction models have been developed using retrospective clinical data and have evolved significantly over the years in terms of predictors of recurrence, data usage, and predictive techniques (statistical/machine learning [ML]). METHODS Following PRISMA guidelines, we performed a systematic literature review of the aforementioned statistical and ML models published between January 2008 and December 2022 through searching five digital databases—PubMed, ScienceDirect, Scopus, Cochrane, and Web of Science. The comprehensive search yielded a total of 163 papers and after a screening process focusing on papers that dealt exclusively with statistical/ML methods, only 23 papers were deemed appropriate for further analysis. We benchmarked the studies on the basis of development, evaluation metrics, and validation strategy with an added emphasis on racial diversity of patients included in the studies. RESULTS In total, 30.4% of the included studies use statistical techniques, while 69.6% are ML-based. Among these, traditional ML models (support vector machines, decision tree, logistic regression, and naïve Bayes) are the most frequently used (26.1%) along with deep learning (26.1%). Deep learning and ensemble learning provide the most accurate predictions (AUC = 0.94 each). CONCLUSION ML-based prediction models exhibit outstanding performance, yet their practical applicability might be hindered by limited interpretability and reduced generalization. Moreover, predictive models for BC recurrence often focus on limited variables related to tumor, treatment, molecular, and clinical features. Imbalanced classes and the lack of open-source data sets impede model development and validation. Furthermore, existing models predominantly overlook African and Middle Eastern populations, as they are trained and validated mainly on Caucasian and Asian patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TT完成签到,获得积分10
1秒前
爱因斯宣完成签到,获得积分20
3秒前
英俊的铭应助山雀采纳,获得10
3秒前
金枪鱼子发布了新的文献求助150
3秒前
豆子发布了新的文献求助20
3秒前
科研通AI2S应助Mansis采纳,获得10
4秒前
喜庆发布了新的文献求助10
4秒前
yangyang发布了新的文献求助10
4秒前
Lcccccc发布了新的文献求助10
4秒前
4秒前
4秒前
you发布了新的文献求助10
5秒前
5秒前
大气千柳关注了科研通微信公众号
5秒前
echo完成签到,获得积分10
5秒前
爆米花应助springwyc采纳,获得10
7秒前
鹿剑心完成签到 ,获得积分20
7秒前
7秒前
曲夜白完成签到 ,获得积分10
8秒前
NOBODY完成签到,获得积分10
8秒前
酷波er应助是容与呀采纳,获得10
9秒前
9秒前
han完成签到,获得积分10
9秒前
赘婿应助文龙采纳,获得10
9秒前
9秒前
斯文败类应助周娅敏采纳,获得10
9秒前
李健的小迷弟应助Kathy采纳,获得10
10秒前
小白兔发布了新的文献求助10
10秒前
陈艳林发布了新的文献求助10
10秒前
xiaoguai发布了新的文献求助20
10秒前
10秒前
alexyang完成签到,获得积分10
10秒前
11秒前
李霞发布了新的文献求助10
11秒前
美满筮发布了新的文献求助10
11秒前
firy完成签到,获得积分10
12秒前
12秒前
喜庆完成签到,获得积分10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582