亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning–Based Models

乳腺癌 癌症 计算机科学 人工智能 机器学习 医学 内科学
作者
Hasna El Haji,Amine Souadka,Bhavik N. Patel,Nada Sbihi,Gokul Ramasamy,Bhavika K. Patel,Mounir Ghogho,Imon Banerjee
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:7
标识
DOI:10.1200/cci.23.00049
摘要

PURPOSE Selection of appropriate adjuvant therapy to ultimately reduce the risk of breast cancer (BC) recurrence is a challenge for medical oncologists. Several automated risk prediction models have been developed using retrospective clinical data and have evolved significantly over the years in terms of predictors of recurrence, data usage, and predictive techniques (statistical/machine learning [ML]). METHODS Following PRISMA guidelines, we performed a systematic literature review of the aforementioned statistical and ML models published between January 2008 and December 2022 through searching five digital databases—PubMed, ScienceDirect, Scopus, Cochrane, and Web of Science. The comprehensive search yielded a total of 163 papers and after a screening process focusing on papers that dealt exclusively with statistical/ML methods, only 23 papers were deemed appropriate for further analysis. We benchmarked the studies on the basis of development, evaluation metrics, and validation strategy with an added emphasis on racial diversity of patients included in the studies. RESULTS In total, 30.4% of the included studies use statistical techniques, while 69.6% are ML-based. Among these, traditional ML models (support vector machines, decision tree, logistic regression, and naïve Bayes) are the most frequently used (26.1%) along with deep learning (26.1%). Deep learning and ensemble learning provide the most accurate predictions (AUC = 0.94 each). CONCLUSION ML-based prediction models exhibit outstanding performance, yet their practical applicability might be hindered by limited interpretability and reduced generalization. Moreover, predictive models for BC recurrence often focus on limited variables related to tumor, treatment, molecular, and clinical features. Imbalanced classes and the lack of open-source data sets impede model development and validation. Furthermore, existing models predominantly overlook African and Middle Eastern populations, as they are trained and validated mainly on Caucasian and Asian patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助liu采纳,获得10
1秒前
烟消云散完成签到,获得积分10
3秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
机智的佳肴完成签到,获得积分10
11秒前
Estrella完成签到,获得积分10
19秒前
dawn发布了新的文献求助20
21秒前
Twonej应助Estrella采纳,获得30
25秒前
miki完成签到 ,获得积分10
35秒前
Orange应助YHF2采纳,获得10
45秒前
YAYING完成签到 ,获得积分10
57秒前
58秒前
Frank完成签到 ,获得积分10
1分钟前
dawn完成签到,获得积分10
1分钟前
1分钟前
YHF2发布了新的文献求助10
1分钟前
YHF2完成签到,获得积分10
1分钟前
慕青应助sxj采纳,获得10
1分钟前
珈蓝完成签到,获得积分10
1分钟前
1分钟前
sxj发布了新的文献求助10
1分钟前
啊啊啊发布了新的文献求助10
1分钟前
1分钟前
lod完成签到,获得积分10
2分钟前
所所应助科研通管家采纳,获得30
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
2分钟前
啊啊啊完成签到,获得积分10
2分钟前
2分钟前
2分钟前
小马2023发布了新的文献求助10
2分钟前
chandlerwong发布了新的文献求助10
2分钟前
2分钟前
氯雷他定发布了新的文献求助10
2分钟前
chandlerwong完成签到,获得积分10
2分钟前
上官若男应助sxj采纳,获得10
2分钟前
llll完成签到 ,获得积分0
2分钟前
氯雷他定完成签到,获得积分10
2分钟前
2分钟前
NattyPoe发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880512
求助须知:如何正确求助?哪些是违规求助? 6573473
关于积分的说明 15689941
捐赠科研通 5000219
什么是DOI,文献DOI怎么找? 2694223
邀请新用户注册赠送积分活动 1636089
关于科研通互助平台的介绍 1593468