Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning–Based Models

乳腺癌 癌症 计算机科学 人工智能 机器学习 医学 内科学
作者
Hasna El Haji,Amine Souadka,Bhavik N. Patel,Nada Sbihi,Gokul Ramasamy,Bhavika K. Patel,Mounir Ghogho,Imon Banerjee
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:7
标识
DOI:10.1200/cci.23.00049
摘要

PURPOSE Selection of appropriate adjuvant therapy to ultimately reduce the risk of breast cancer (BC) recurrence is a challenge for medical oncologists. Several automated risk prediction models have been developed using retrospective clinical data and have evolved significantly over the years in terms of predictors of recurrence, data usage, and predictive techniques (statistical/machine learning [ML]). METHODS Following PRISMA guidelines, we performed a systematic literature review of the aforementioned statistical and ML models published between January 2008 and December 2022 through searching five digital databases—PubMed, ScienceDirect, Scopus, Cochrane, and Web of Science. The comprehensive search yielded a total of 163 papers and after a screening process focusing on papers that dealt exclusively with statistical/ML methods, only 23 papers were deemed appropriate for further analysis. We benchmarked the studies on the basis of development, evaluation metrics, and validation strategy with an added emphasis on racial diversity of patients included in the studies. RESULTS In total, 30.4% of the included studies use statistical techniques, while 69.6% are ML-based. Among these, traditional ML models (support vector machines, decision tree, logistic regression, and naïve Bayes) are the most frequently used (26.1%) along with deep learning (26.1%). Deep learning and ensemble learning provide the most accurate predictions (AUC = 0.94 each). CONCLUSION ML-based prediction models exhibit outstanding performance, yet their practical applicability might be hindered by limited interpretability and reduced generalization. Moreover, predictive models for BC recurrence often focus on limited variables related to tumor, treatment, molecular, and clinical features. Imbalanced classes and the lack of open-source data sets impede model development and validation. Furthermore, existing models predominantly overlook African and Middle Eastern populations, as they are trained and validated mainly on Caucasian and Asian patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
emm完成签到,获得积分10
刚刚
1秒前
1秒前
畅快海云完成签到 ,获得积分10
1秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
七月完成签到,获得积分10
4秒前
5秒前
Lillie完成签到,获得积分10
5秒前
銘錵辣椒完成签到,获得积分10
6秒前
lzy完成签到,获得积分10
7秒前
Haru发布了新的文献求助30
7秒前
WFR发布了新的文献求助10
8秒前
8秒前
橙子发布了新的文献求助10
8秒前
lr完成签到,获得积分10
9秒前
充电宝应助负责的方盒采纳,获得10
10秒前
jkl关注了科研通微信公众号
12秒前
甘草三七完成签到,获得积分10
12秒前
13秒前
zh20130完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
koala完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
小宋完成签到,获得积分10
16秒前
一夜轻舟完成签到,获得积分10
16秒前
Chaiyuan完成签到 ,获得积分10
16秒前
852应助WFR采纳,获得10
17秒前
17秒前
Agan发布了新的文献求助10
17秒前
Akim应助李串串采纳,获得10
18秒前
星期八完成签到,获得积分10
19秒前
风马少年发布了新的文献求助10
19秒前
NexusExplorer应助小志和小妮采纳,获得10
20秒前
20秒前
20秒前
Haru完成签到,获得积分20
21秒前
搜集达人应助jason0023采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428164
求助须知:如何正确求助?哪些是违规求助? 4542263
关于积分的说明 14179408
捐赠科研通 4459804
什么是DOI,文献DOI怎么找? 2445511
邀请新用户注册赠送积分活动 1436698
关于科研通互助平台的介绍 1413878