Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning–Based Models

乳腺癌 癌症 计算机科学 人工智能 机器学习 医学 内科学
作者
Hasna El Haji,Amine Souadka,Bhavik N. Patel,Nada Sbihi,Gokul Ramasamy,Bhavika K. Patel,Mounir Ghogho,Imon Banerjee
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:7
标识
DOI:10.1200/cci.23.00049
摘要

PURPOSE Selection of appropriate adjuvant therapy to ultimately reduce the risk of breast cancer (BC) recurrence is a challenge for medical oncologists. Several automated risk prediction models have been developed using retrospective clinical data and have evolved significantly over the years in terms of predictors of recurrence, data usage, and predictive techniques (statistical/machine learning [ML]). METHODS Following PRISMA guidelines, we performed a systematic literature review of the aforementioned statistical and ML models published between January 2008 and December 2022 through searching five digital databases—PubMed, ScienceDirect, Scopus, Cochrane, and Web of Science. The comprehensive search yielded a total of 163 papers and after a screening process focusing on papers that dealt exclusively with statistical/ML methods, only 23 papers were deemed appropriate for further analysis. We benchmarked the studies on the basis of development, evaluation metrics, and validation strategy with an added emphasis on racial diversity of patients included in the studies. RESULTS In total, 30.4% of the included studies use statistical techniques, while 69.6% are ML-based. Among these, traditional ML models (support vector machines, decision tree, logistic regression, and naïve Bayes) are the most frequently used (26.1%) along with deep learning (26.1%). Deep learning and ensemble learning provide the most accurate predictions (AUC = 0.94 each). CONCLUSION ML-based prediction models exhibit outstanding performance, yet their practical applicability might be hindered by limited interpretability and reduced generalization. Moreover, predictive models for BC recurrence often focus on limited variables related to tumor, treatment, molecular, and clinical features. Imbalanced classes and the lack of open-source data sets impede model development and validation. Furthermore, existing models predominantly overlook African and Middle Eastern populations, as they are trained and validated mainly on Caucasian and Asian patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腾飞完成签到,获得积分10
1秒前
lin关闭了lin文献求助
1秒前
三岁半发布了新的文献求助10
2秒前
lyncee完成签到,获得积分10
2秒前
2秒前
赘婿应助SUKAILIMAI采纳,获得10
3秒前
3秒前
wt发布了新的文献求助10
3秒前
FashionBoy应助逆流的鱼采纳,获得10
4秒前
4秒前
5秒前
在水一方应助今夕采纳,获得10
5秒前
5秒前
5秒前
程雪霞完成签到,获得积分10
6秒前
慕青应助梦里的大子刊采纳,获得10
6秒前
ml发布了新的文献求助20
6秒前
7秒前
cdqiu完成签到,获得积分10
7秒前
蟹老板发布了新的文献求助20
7秒前
7秒前
李爱国应助忧心的洙采纳,获得10
8秒前
AN应助123采纳,获得30
8秒前
大力帽子应助NOT采纳,获得10
8秒前
kira完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
心事全在脸上完成签到,获得积分10
9秒前
从容前行发布了新的文献求助80
10秒前
wt完成签到,获得积分10
10秒前
Om完成签到,获得积分10
11秒前
yls123发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
gao发布了新的文献求助10
13秒前
13秒前
愉快彩虹完成签到,获得积分10
13秒前
14秒前
Ocean完成签到,获得积分10
14秒前
Jrssion发布了新的文献求助10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692886
求助须知:如何正确求助?哪些是违规求助? 5090698
关于积分的说明 15210088
捐赠科研通 4850102
什么是DOI,文献DOI怎么找? 2601504
邀请新用户注册赠送积分活动 1553332
关于科研通互助平台的介绍 1511381