Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning–Based Models

乳腺癌 癌症 计算机科学 人工智能 机器学习 医学 内科学
作者
Hasna El Haji,Amine Souadka,Bhavik N. Patel,Nada Sbihi,Gokul Ramasamy,Bhavika K. Patel,Mounir Ghogho,Imon Banerjee
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:7
标识
DOI:10.1200/cci.23.00049
摘要

PURPOSE Selection of appropriate adjuvant therapy to ultimately reduce the risk of breast cancer (BC) recurrence is a challenge for medical oncologists. Several automated risk prediction models have been developed using retrospective clinical data and have evolved significantly over the years in terms of predictors of recurrence, data usage, and predictive techniques (statistical/machine learning [ML]). METHODS Following PRISMA guidelines, we performed a systematic literature review of the aforementioned statistical and ML models published between January 2008 and December 2022 through searching five digital databases—PubMed, ScienceDirect, Scopus, Cochrane, and Web of Science. The comprehensive search yielded a total of 163 papers and after a screening process focusing on papers that dealt exclusively with statistical/ML methods, only 23 papers were deemed appropriate for further analysis. We benchmarked the studies on the basis of development, evaluation metrics, and validation strategy with an added emphasis on racial diversity of patients included in the studies. RESULTS In total, 30.4% of the included studies use statistical techniques, while 69.6% are ML-based. Among these, traditional ML models (support vector machines, decision tree, logistic regression, and naïve Bayes) are the most frequently used (26.1%) along with deep learning (26.1%). Deep learning and ensemble learning provide the most accurate predictions (AUC = 0.94 each). CONCLUSION ML-based prediction models exhibit outstanding performance, yet their practical applicability might be hindered by limited interpretability and reduced generalization. Moreover, predictive models for BC recurrence often focus on limited variables related to tumor, treatment, molecular, and clinical features. Imbalanced classes and the lack of open-source data sets impede model development and validation. Furthermore, existing models predominantly overlook African and Middle Eastern populations, as they are trained and validated mainly on Caucasian and Asian patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
詹姆斯哈登完成签到,获得积分10
1秒前
DianaLee完成签到 ,获得积分10
4秒前
5秒前
5秒前
成为一只会科研的猫完成签到 ,获得积分10
6秒前
火星的雪完成签到 ,获得积分0
7秒前
fufufu123完成签到 ,获得积分10
7秒前
科研通AI6应助Davidjin采纳,获得10
8秒前
陈麦关注了科研通微信公众号
9秒前
淡然冬灵完成签到,获得积分10
9秒前
科研助理发布了新的文献求助10
10秒前
tangli完成签到 ,获得积分10
12秒前
CipherSage应助宜菏采纳,获得10
14秒前
jason完成签到 ,获得积分10
14秒前
恋恋青葡萄完成签到,获得积分10
15秒前
18秒前
ho完成签到,获得积分10
21秒前
LingYun完成签到,获得积分10
23秒前
yznfly应助ho采纳,获得200
26秒前
栖梧砚客完成签到 ,获得积分10
27秒前
刘歌完成签到 ,获得积分10
27秒前
Mercury完成签到 ,获得积分10
28秒前
贾方硕完成签到,获得积分10
28秒前
888完成签到,获得积分10
32秒前
Lincoln完成签到,获得积分10
33秒前
HCLonely完成签到,获得积分0
36秒前
科研通AI2S应助Muncy采纳,获得20
40秒前
量子星尘发布了新的文献求助10
42秒前
独特的秋完成签到 ,获得积分10
42秒前
吉吉国王完成签到 ,获得积分10
43秒前
45秒前
13633501455完成签到 ,获得积分10
46秒前
哎呀哎呀呀完成签到,获得积分10
47秒前
科研助理发布了新的文献求助10
48秒前
你好纠结伦完成签到,获得积分10
48秒前
wll1091完成签到 ,获得积分10
50秒前
陈麦发布了新的文献求助10
50秒前
Joy完成签到,获得积分10
51秒前
默默平文完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086