亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning–Based Models

乳腺癌 癌症 计算机科学 人工智能 机器学习 医学 内科学
作者
Hasna El Haji,Amine Souadka,Bhavik N. Patel,Nada Sbihi,Gokul Ramasamy,Bhavika K. Patel,Mounir Ghogho,Imon Banerjee
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:7
标识
DOI:10.1200/cci.23.00049
摘要

PURPOSE Selection of appropriate adjuvant therapy to ultimately reduce the risk of breast cancer (BC) recurrence is a challenge for medical oncologists. Several automated risk prediction models have been developed using retrospective clinical data and have evolved significantly over the years in terms of predictors of recurrence, data usage, and predictive techniques (statistical/machine learning [ML]). METHODS Following PRISMA guidelines, we performed a systematic literature review of the aforementioned statistical and ML models published between January 2008 and December 2022 through searching five digital databases—PubMed, ScienceDirect, Scopus, Cochrane, and Web of Science. The comprehensive search yielded a total of 163 papers and after a screening process focusing on papers that dealt exclusively with statistical/ML methods, only 23 papers were deemed appropriate for further analysis. We benchmarked the studies on the basis of development, evaluation metrics, and validation strategy with an added emphasis on racial diversity of patients included in the studies. RESULTS In total, 30.4% of the included studies use statistical techniques, while 69.6% are ML-based. Among these, traditional ML models (support vector machines, decision tree, logistic regression, and naïve Bayes) are the most frequently used (26.1%) along with deep learning (26.1%). Deep learning and ensemble learning provide the most accurate predictions (AUC = 0.94 each). CONCLUSION ML-based prediction models exhibit outstanding performance, yet their practical applicability might be hindered by limited interpretability and reduced generalization. Moreover, predictive models for BC recurrence often focus on limited variables related to tumor, treatment, molecular, and clinical features. Imbalanced classes and the lack of open-source data sets impede model development and validation. Furthermore, existing models predominantly overlook African and Middle Eastern populations, as they are trained and validated mainly on Caucasian and Asian patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
毛123完成签到,获得积分10
4秒前
伊笙完成签到 ,获得积分10
5秒前
乐乐发布了新的文献求助30
7秒前
小蘑菇应助9999采纳,获得10
8秒前
zhongyinanke发布了新的文献求助10
9秒前
9秒前
生产队的建设者完成签到,获得积分10
26秒前
28秒前
所所应助Smry采纳,获得10
28秒前
乐乐发布了新的文献求助10
28秒前
29秒前
Lucas应助欢呼的梦琪采纳,获得10
33秒前
斯文败类应助bcc666采纳,获得10
33秒前
酷酷的王完成签到 ,获得积分10
36秒前
39秒前
Smry发布了新的文献求助10
43秒前
木槿完成签到 ,获得积分10
50秒前
51秒前
53秒前
科研任发布了新的文献求助10
56秒前
57秒前
Sandy完成签到 ,获得积分10
58秒前
赘婿应助凶狠的妙柏采纳,获得10
1分钟前
科研通AI2S应助plateauman采纳,获得10
1分钟前
1分钟前
爱学习的YY完成签到 ,获得积分10
1分钟前
Hello应助阿良采纳,获得10
1分钟前
大个应助生产队的建设者采纳,获得10
1分钟前
赫青亦完成签到 ,获得积分10
1分钟前
wy发布了新的文献求助10
1分钟前
科研任完成签到,获得积分10
1分钟前
1分钟前
凶狠的妙柏完成签到,获得积分10
1分钟前
1分钟前
研友_VZG7GZ应助renrunxue采纳,获得10
1分钟前
h7525yanghan完成签到 ,获得积分20
1分钟前
山河表里发布了新的文献求助10
1分钟前
完美世界应助wy采纳,获得10
1分钟前
renrunxue完成签到,获得积分10
1分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
大理州人民医院2021上半年(卫生类)人员招聘试题及解析 1000
2023云南大理州事业单位招聘专业技术人员医疗岗162人笔试历年典型考题及考点剖析附带答案详解 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3114308
求助须知:如何正确求助?哪些是违规求助? 2764608
关于积分的说明 7678871
捐赠科研通 2419674
什么是DOI,文献DOI怎么找? 1284695
科研通“疑难数据库(出版商)”最低求助积分说明 619771
版权声明 599711