Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning–Based Models

乳腺癌 癌症 计算机科学 人工智能 机器学习 医学 内科学
作者
Hasna El Haji,Amine Souadka,Bhavik N. Patel,Nada Sbihi,Gokul Ramasamy,Bhavika K. Patel,Mounir Ghogho,Imon Banerjee
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:7
标识
DOI:10.1200/cci.23.00049
摘要

PURPOSE Selection of appropriate adjuvant therapy to ultimately reduce the risk of breast cancer (BC) recurrence is a challenge for medical oncologists. Several automated risk prediction models have been developed using retrospective clinical data and have evolved significantly over the years in terms of predictors of recurrence, data usage, and predictive techniques (statistical/machine learning [ML]). METHODS Following PRISMA guidelines, we performed a systematic literature review of the aforementioned statistical and ML models published between January 2008 and December 2022 through searching five digital databases—PubMed, ScienceDirect, Scopus, Cochrane, and Web of Science. The comprehensive search yielded a total of 163 papers and after a screening process focusing on papers that dealt exclusively with statistical/ML methods, only 23 papers were deemed appropriate for further analysis. We benchmarked the studies on the basis of development, evaluation metrics, and validation strategy with an added emphasis on racial diversity of patients included in the studies. RESULTS In total, 30.4% of the included studies use statistical techniques, while 69.6% are ML-based. Among these, traditional ML models (support vector machines, decision tree, logistic regression, and naïve Bayes) are the most frequently used (26.1%) along with deep learning (26.1%). Deep learning and ensemble learning provide the most accurate predictions (AUC = 0.94 each). CONCLUSION ML-based prediction models exhibit outstanding performance, yet their practical applicability might be hindered by limited interpretability and reduced generalization. Moreover, predictive models for BC recurrence often focus on limited variables related to tumor, treatment, molecular, and clinical features. Imbalanced classes and the lack of open-source data sets impede model development and validation. Furthermore, existing models predominantly overlook African and Middle Eastern populations, as they are trained and validated mainly on Caucasian and Asian patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mcx完成签到,获得积分10
1秒前
CipherSage应助高山流水采纳,获得10
1秒前
xun关闭了xun文献求助
1秒前
Areyouokay发布了新的文献求助10
2秒前
2秒前
2秒前
WJN完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI2S应助imemax采纳,获得10
3秒前
Jiangtao完成签到,获得积分10
3秒前
xianyu完成签到,获得积分10
4秒前
5秒前
橘子29完成签到 ,获得积分10
5秒前
AH106完成签到,获得积分10
6秒前
CuSO4完成签到,获得积分10
6秒前
xixi完成签到 ,获得积分10
6秒前
homeless完成签到 ,获得积分10
6秒前
coolru发布了新的文献求助10
7秒前
9秒前
9秒前
10秒前
科研小黄发布了新的文献求助10
10秒前
英姑应助夏侯一手采纳,获得10
10秒前
11秒前
微微发布了新的文献求助10
11秒前
11秒前
margo发布了新的文献求助10
12秒前
13秒前
天天快乐应助欢喜的祥采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
Wefaily应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得30
15秒前
15秒前
orixero应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得50
15秒前
乐乐应助科研通管家采纳,获得30
15秒前
15秒前
田様应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409647
求助须知:如何正确求助?哪些是违规求助? 4527242
关于积分的说明 14109820
捐赠科研通 4441721
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429576
关于科研通互助平台的介绍 1407723