Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning–Based Models

乳腺癌 癌症 计算机科学 人工智能 机器学习 医学 内科学
作者
Hasna El Haji,Amine Souadka,Bhavik N. Patel,Nada Sbihi,Gokul Ramasamy,Bhavika K. Patel,Mounir Ghogho,Imon Banerjee
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:7
标识
DOI:10.1200/cci.23.00049
摘要

PURPOSE Selection of appropriate adjuvant therapy to ultimately reduce the risk of breast cancer (BC) recurrence is a challenge for medical oncologists. Several automated risk prediction models have been developed using retrospective clinical data and have evolved significantly over the years in terms of predictors of recurrence, data usage, and predictive techniques (statistical/machine learning [ML]). METHODS Following PRISMA guidelines, we performed a systematic literature review of the aforementioned statistical and ML models published between January 2008 and December 2022 through searching five digital databases—PubMed, ScienceDirect, Scopus, Cochrane, and Web of Science. The comprehensive search yielded a total of 163 papers and after a screening process focusing on papers that dealt exclusively with statistical/ML methods, only 23 papers were deemed appropriate for further analysis. We benchmarked the studies on the basis of development, evaluation metrics, and validation strategy with an added emphasis on racial diversity of patients included in the studies. RESULTS In total, 30.4% of the included studies use statistical techniques, while 69.6% are ML-based. Among these, traditional ML models (support vector machines, decision tree, logistic regression, and naïve Bayes) are the most frequently used (26.1%) along with deep learning (26.1%). Deep learning and ensemble learning provide the most accurate predictions (AUC = 0.94 each). CONCLUSION ML-based prediction models exhibit outstanding performance, yet their practical applicability might be hindered by limited interpretability and reduced generalization. Moreover, predictive models for BC recurrence often focus on limited variables related to tumor, treatment, molecular, and clinical features. Imbalanced classes and the lack of open-source data sets impede model development and validation. Furthermore, existing models predominantly overlook African and Middle Eastern populations, as they are trained and validated mainly on Caucasian and Asian patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助dudulu采纳,获得10
1秒前
妖魔鬼怪快离开完成签到,获得积分10
1秒前
mf完成签到 ,获得积分10
2秒前
虚幻远侵发布了新的文献求助10
4秒前
浮游应助王滕采纳,获得10
4秒前
jiangzhi发布了新的文献求助30
4秒前
欣慰冬亦完成签到,获得积分10
4秒前
5秒前
阿猫完成签到,获得积分10
5秒前
汉堡包应助LTT采纳,获得10
6秒前
小宅女完成签到 ,获得积分10
6秒前
天天快乐应助joey106采纳,获得10
8秒前
蔡继海发布了新的文献求助10
8秒前
z7777777完成签到,获得积分10
8秒前
9秒前
打打应助辛勤的管道工采纳,获得10
9秒前
zy发布了新的文献求助10
10秒前
黑白菜完成签到,获得积分10
10秒前
远辰完成签到,获得积分10
14秒前
Akim应助TAO采纳,获得10
14秒前
15秒前
细腻灯泡发布了新的文献求助10
15秒前
16秒前
隐形元绿完成签到,获得积分10
16秒前
小白白完成签到 ,获得积分10
16秒前
天天快乐应助kyt666采纳,获得10
17秒前
深情安青应助小鹏采纳,获得10
17秒前
chall应助玛琪玛小姐的狗采纳,获得10
18秒前
隐形元绿发布了新的文献求助10
19秒前
21秒前
22秒前
22秒前
活力奇异果完成签到,获得积分10
22秒前
云竹丶完成签到,获得积分10
23秒前
25秒前
25秒前
chall应助玛琪玛小姐的狗采纳,获得10
26秒前
兔子发布了新的文献求助10
27秒前
涂涂虫发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329