Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning–Based Models

乳腺癌 癌症 计算机科学 人工智能 机器学习 医学 内科学
作者
Hasna El Haji,Amine Souadka,Bhavik N. Patel,Nada Sbihi,Gokul Ramasamy,Bhavika K. Patel,Mounir Ghogho,Imon Banerjee
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:7
标识
DOI:10.1200/cci.23.00049
摘要

PURPOSE Selection of appropriate adjuvant therapy to ultimately reduce the risk of breast cancer (BC) recurrence is a challenge for medical oncologists. Several automated risk prediction models have been developed using retrospective clinical data and have evolved significantly over the years in terms of predictors of recurrence, data usage, and predictive techniques (statistical/machine learning [ML]). METHODS Following PRISMA guidelines, we performed a systematic literature review of the aforementioned statistical and ML models published between January 2008 and December 2022 through searching five digital databases—PubMed, ScienceDirect, Scopus, Cochrane, and Web of Science. The comprehensive search yielded a total of 163 papers and after a screening process focusing on papers that dealt exclusively with statistical/ML methods, only 23 papers were deemed appropriate for further analysis. We benchmarked the studies on the basis of development, evaluation metrics, and validation strategy with an added emphasis on racial diversity of patients included in the studies. RESULTS In total, 30.4% of the included studies use statistical techniques, while 69.6% are ML-based. Among these, traditional ML models (support vector machines, decision tree, logistic regression, and naïve Bayes) are the most frequently used (26.1%) along with deep learning (26.1%). Deep learning and ensemble learning provide the most accurate predictions (AUC = 0.94 each). CONCLUSION ML-based prediction models exhibit outstanding performance, yet their practical applicability might be hindered by limited interpretability and reduced generalization. Moreover, predictive models for BC recurrence often focus on limited variables related to tumor, treatment, molecular, and clinical features. Imbalanced classes and the lack of open-source data sets impede model development and validation. Furthermore, existing models predominantly overlook African and Middle Eastern populations, as they are trained and validated mainly on Caucasian and Asian patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
陶醉的鹤轩完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
JMrider发布了新的文献求助10
2秒前
ww发布了新的文献求助10
2秒前
静芯给静芯的求助进行了留言
2秒前
2秒前
传奇3应助ddddd采纳,获得10
3秒前
明理吐司发布了新的文献求助10
3秒前
慕青应助专注鸣凤采纳,获得10
3秒前
3秒前
脑洞疼应助笑笑采纳,获得10
3秒前
嗯嗯发布了新的文献求助10
4秒前
大莹莹发布了新的文献求助10
4秒前
别封我了行吗完成签到,获得积分10
4秒前
你嵙这个期刊没买完成签到,获得积分10
4秒前
李轩安发布了新的文献求助10
5秒前
march完成签到,获得积分10
5秒前
小猴子应助荷珠采纳,获得30
5秒前
Blue完成签到,获得积分10
6秒前
浮游应助肥嘟嘟左卫门采纳,获得10
6秒前
QiwenZhao发布了新的文献求助10
6秒前
Dora发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
直率觅松完成签到,获得积分20
7秒前
JMrider完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
碧蓝雨真完成签到,获得积分10
8秒前
8秒前
汉堡包应助绝世大魔王采纳,获得10
8秒前
8秒前
Ava应助Swait采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552713
求助须知:如何正确求助?哪些是违规求助? 4637412
关于积分的说明 14649184
捐赠科研通 4579232
什么是DOI,文献DOI怎么找? 2511511
邀请新用户注册赠送积分活动 1486533
关于科研通互助平台的介绍 1457559