Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning–Based Models

乳腺癌 癌症 计算机科学 人工智能 机器学习 医学 内科学
作者
Hasna El Haji,Amine Souadka,Bhavik N. Patel,Nada Sbihi,Gokul Ramasamy,Bhavika K. Patel,Mounir Ghogho,Imon Banerjee
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:7
标识
DOI:10.1200/cci.23.00049
摘要

PURPOSE Selection of appropriate adjuvant therapy to ultimately reduce the risk of breast cancer (BC) recurrence is a challenge for medical oncologists. Several automated risk prediction models have been developed using retrospective clinical data and have evolved significantly over the years in terms of predictors of recurrence, data usage, and predictive techniques (statistical/machine learning [ML]). METHODS Following PRISMA guidelines, we performed a systematic literature review of the aforementioned statistical and ML models published between January 2008 and December 2022 through searching five digital databases—PubMed, ScienceDirect, Scopus, Cochrane, and Web of Science. The comprehensive search yielded a total of 163 papers and after a screening process focusing on papers that dealt exclusively with statistical/ML methods, only 23 papers were deemed appropriate for further analysis. We benchmarked the studies on the basis of development, evaluation metrics, and validation strategy with an added emphasis on racial diversity of patients included in the studies. RESULTS In total, 30.4% of the included studies use statistical techniques, while 69.6% are ML-based. Among these, traditional ML models (support vector machines, decision tree, logistic regression, and naïve Bayes) are the most frequently used (26.1%) along with deep learning (26.1%). Deep learning and ensemble learning provide the most accurate predictions (AUC = 0.94 each). CONCLUSION ML-based prediction models exhibit outstanding performance, yet their practical applicability might be hindered by limited interpretability and reduced generalization. Moreover, predictive models for BC recurrence often focus on limited variables related to tumor, treatment, molecular, and clinical features. Imbalanced classes and the lack of open-source data sets impede model development and validation. Furthermore, existing models predominantly overlook African and Middle Eastern populations, as they are trained and validated mainly on Caucasian and Asian patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
permanent完成签到,获得积分20
1秒前
共享精神应助吃肉璇璇采纳,获得10
1秒前
丘比特应助晶坚强采纳,获得10
2秒前
2秒前
学术牛马发布了新的文献求助10
2秒前
3秒前
小鳄鱼夸夸完成签到,获得积分10
3秒前
豆豆发布了新的文献求助10
3秒前
permanent发布了新的文献求助10
4秒前
4秒前
丫丫发布了新的文献求助10
4秒前
5秒前
5秒前
田様应助文德先生采纳,获得10
5秒前
田様应助背后的世开采纳,获得10
6秒前
eywct发布了新的文献求助10
6秒前
7秒前
Chloe发布了新的文献求助10
8秒前
8秒前
坦率导师sw完成签到,获得积分10
9秒前
9秒前
9秒前
sujinyu发布了新的文献求助100
9秒前
Bob完成签到 ,获得积分10
9秒前
9秒前
千叶儿发布了新的文献求助10
10秒前
科研通AI6.1应助deardorff采纳,获得10
10秒前
隐形曼青应助虚拟的明辉采纳,获得10
10秒前
11秒前
12秒前
听风发布了新的文献求助10
12秒前
12秒前
一米阳光发布了新的文献求助10
13秒前
FashionBoy应助坦率导师sw采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
刘星宇发布了新的文献求助10
13秒前
大模型应助大鸣王潮采纳,获得10
15秒前
pcr163应助机灵柚子采纳,获得500
16秒前
jt完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300