Deep Learning Radiomics Nomogram Based on Multiphase Computed Tomography for Predicting Axillary Lymph Node Metastasis in Breast Cancer

列线图 医学 乳腺癌 无线电技术 接收机工作特性 放射科 逻辑回归 腋窝淋巴结 置信区间 阶段(地层学) 癌症 肿瘤科 内科学 生物 古生物学
作者
Jieqiu Zhang,Wei Yin,Lu Yang,Xiaopeng Yao
出处
期刊:Molecular Imaging and Biology [Springer Science+Business Media]
卷期号:26 (1): 90-100 被引量:5
标识
DOI:10.1007/s11307-023-01839-0
摘要

This study aims to develop and validate a deep learning radiomics nomogram (DLRN) for prediction of axillary lymph node metastasis (ALNM) in breast cancer patients. We retrospectively enrolled 196 patients with non-specific invasive breast cancer confirmed by pathology, radiomics and deep learning features were extracted from unenhanced and biphasic (arterial and venous phase) contrast-enhanced CT, and the non-linear support vector machine was used to construct the radiomics signature and the deep learning signature, respectively. Next, a DLRN was developed with independent predictors and evaluated the performance of models in terms of discrimination and clinical utility. Multivariate logistic regression analysis showed that the radiomics signature, deep learning signature, and clinical n stage were independent predictors. The DLRN accurately predicted ALNM and yielded an area under the receiver operator characteristic curve of 0.893 (95% confidence interval, 0.814–0.972) in the validation set, with good calibration. Decision curve analysis confirmed that the DLRN had higher clinical utility than other predictors. The DLRN had good predictive value for ALNM in breast cancer patients and provide valuable information for individual treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zwc发布了新的文献求助10
1秒前
开朗芸遥完成签到,获得积分10
2秒前
3秒前
5秒前
6秒前
6秒前
飞呀发布了新的文献求助30
6秒前
安迪完成签到,获得积分10
7秒前
英俊的铭应助阿尔法贝塔采纳,获得10
7秒前
Ashley完成签到,获得积分10
7秒前
8秒前
8秒前
星辰大海应助风中的文龙采纳,获得10
9秒前
美好莹芝发布了新的文献求助10
9秒前
9秒前
哈哈哈发布了新的文献求助10
10秒前
瓜瓜发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
12秒前
深情安青应助wenbin采纳,获得10
13秒前
14秒前
852应助Cassie采纳,获得10
14秒前
poet泸沽发布了新的文献求助10
15秒前
燕十三发布了新的文献求助10
16秒前
16秒前
逆流发布了新的文献求助10
17秒前
肝帝应助搞不来科研采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
19秒前
魁梧的小笼包完成签到,获得积分10
19秒前
快乐梦菡发布了新的文献求助10
20秒前
597完成签到,获得积分10
20秒前
瓜瓜完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794