亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bayesian learning of Covid-19 vaccine safety while incorporating adverse events ontology

2019年冠状病毒病(COVID-19) 本体论 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 贝叶斯概率 2019-20冠状病毒爆发 不利影响 计算机科学 医学 数据科学 人工智能 病毒学 药理学 内科学 哲学 疾病 认识论 爆发 传染病(医学专业)
作者
Bangyao Zhao,Žhong Yuan,Jian Kang,Lili Zhao
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:17 (4) 被引量:1
标识
DOI:10.1214/23-aoas1743
摘要

While vaccines are crucial to end the COVID-19 pandemic, public confidence in vaccine safety has always been vulnerable. Many statistical methods have been applied to VAERS (Vaccine Adverse Event Reporting System) database to study the safety of COVID-19 vaccines. However, none of these methods considered the adverse event (AE) ontology. AEs are naturally related; for example, events of retching, dysphagia, and reflux are all related to an abnormal digestive system. Explicitly bringing AE relationships into the model can aid in the detection of true AE signals amid the noise while reducing false positives. We propose a Bayesian graph-assisted signal selection (BGrass) model to simultaneously estimate all AEs while incorporating the network of dependence between AEs. Under a fully Bayesian inference framework, we also propose a negative control approach to mitigate the reporting bias and an enrichment approach to detecting AE groups of concern. For posterior computation we construct an equivalent model representation and develop an efficient Gibbs sampler. We evaluate the performance of BGrass via extensive simulations. To study the safety of COVID-19 vaccines, we apply BGrass to analyze approximately one million VAERS reports (01/01/2016-12/24/2021) involving more than 800 AEs. In particular, we found that blood clots (including deep vein thrombosis, thrombosis, and pulmonary embolism) are more likely to be reported after COVID-19 vaccination, compared to influenza vaccines. They are also reported more often for Johnson & Johnson-Janssen vaccine, compared to mRNA-based COVID-19 vaccines. A user-friendly R package BGrass that implements the proposed methods to assess vaccine safety is included in the Supplementary Material and is publicly available at https://github.com/BangyaoZhao/BGrass.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助积极的明天采纳,获得10
刚刚
6秒前
9秒前
Gloria发布了新的文献求助10
11秒前
拾新发布了新的文献求助10
12秒前
xiaoyuan发布了新的文献求助100
13秒前
zzyuyu完成签到 ,获得积分10
15秒前
伯云完成签到,获得积分10
20秒前
现实的俊驰完成签到 ,获得积分10
20秒前
儒雅珊珊完成签到,获得积分20
28秒前
在水一方应助yaooo采纳,获得10
30秒前
852应助cc采纳,获得10
49秒前
天天快乐应助Gloria采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
思源应助Tao2023采纳,获得30
1分钟前
1分钟前
丘比特应助拾新采纳,获得10
1分钟前
1分钟前
积极的明天完成签到,获得积分10
1分钟前
1分钟前
Lan完成签到 ,获得积分10
1分钟前
拾新发布了新的文献求助10
1分钟前
ZHANG_ZHOU_HE发布了新的文献求助10
1分钟前
达西苏应助科研通管家采纳,获得10
1分钟前
2分钟前
ddfighting完成签到,获得积分10
2分钟前
2分钟前
Lucas应助兔兔大王采纳,获得10
2分钟前
ZHANG_ZHOU_HE完成签到,获得积分10
2分钟前
Jason完成签到 ,获得积分10
2分钟前
像个间谍完成签到 ,获得积分10
2分钟前
Jason关注了科研通微信公众号
3分钟前
3分钟前
wttt发布了新的文献求助10
3分钟前
顾矜应助拾新采纳,获得10
3分钟前
3分钟前
3分钟前
wttt完成签到,获得积分10
3分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584653
求助须知:如何正确求助?哪些是违规求助? 4668554
关于积分的说明 14771466
捐赠科研通 4612329
什么是DOI,文献DOI怎么找? 2530103
邀请新用户注册赠送积分活动 1499037
关于科研通互助平台的介绍 1467479