Bayesian learning of Covid-19 vaccine safety while incorporating adverse events ontology

2019年冠状病毒病(COVID-19) 本体论 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 贝叶斯概率 2019-20冠状病毒爆发 不利影响 计算机科学 医学 数据科学 人工智能 病毒学 药理学 内科学 哲学 爆发 传染病(医学专业) 疾病 认识论
作者
Bangyao Zhao,Žhong Yuan,Jian Kang,Lili Zhao
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:17 (4) 被引量:1
标识
DOI:10.1214/23-aoas1743
摘要

While vaccines are crucial to end the COVID-19 pandemic, public confidence in vaccine safety has always been vulnerable. Many statistical methods have been applied to VAERS (Vaccine Adverse Event Reporting System) database to study the safety of COVID-19 vaccines. However, none of these methods considered the adverse event (AE) ontology. AEs are naturally related; for example, events of retching, dysphagia, and reflux are all related to an abnormal digestive system. Explicitly bringing AE relationships into the model can aid in the detection of true AE signals amid the noise while reducing false positives. We propose a Bayesian graph-assisted signal selection (BGrass) model to simultaneously estimate all AEs while incorporating the network of dependence between AEs. Under a fully Bayesian inference framework, we also propose a negative control approach to mitigate the reporting bias and an enrichment approach to detecting AE groups of concern. For posterior computation we construct an equivalent model representation and develop an efficient Gibbs sampler. We evaluate the performance of BGrass via extensive simulations. To study the safety of COVID-19 vaccines, we apply BGrass to analyze approximately one million VAERS reports (01/01/2016-12/24/2021) involving more than 800 AEs. In particular, we found that blood clots (including deep vein thrombosis, thrombosis, and pulmonary embolism) are more likely to be reported after COVID-19 vaccination, compared to influenza vaccines. They are also reported more often for Johnson & Johnson-Janssen vaccine, compared to mRNA-based COVID-19 vaccines. A user-friendly R package BGrass that implements the proposed methods to assess vaccine safety is included in the Supplementary Material and is publicly available at https://github.com/BangyaoZhao/BGrass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cfcforever完成签到,获得积分10
刚刚
大模型应助狂野傲南采纳,获得10
1秒前
SciGPT应助哈哈哈采纳,获得10
1秒前
英俊的铭应助自由宛筠采纳,获得10
1秒前
充电宝应助雪落六年yyds采纳,获得10
1秒前
隐形曼青应助aa采纳,获得10
2秒前
2秒前
张雷应助容荣采纳,获得20
3秒前
完美世界应助cure采纳,获得10
3秒前
5秒前
明朗完成签到 ,获得积分10
6秒前
枫泾完成签到,获得积分10
6秒前
ACTIVE发布了新的文献求助10
6秒前
太清完成签到 ,获得积分10
7秒前
阿燕发布了新的文献求助10
8秒前
李健的小迷弟应助入暖采纳,获得10
8秒前
8秒前
JamesPei应助曼凡采纳,获得10
8秒前
高高的远山完成签到,获得积分10
9秒前
cure完成签到,获得积分10
12秒前
12秒前
羽墨完成签到,获得积分10
13秒前
Peggy完成签到,获得积分10
13秒前
Ricardo完成签到,获得积分10
14秒前
Ruby-Geo完成签到,获得积分10
14秒前
yaoyao发布了新的文献求助10
14秒前
iNk应助科研通管家采纳,获得10
15秒前
iNk应助科研通管家采纳,获得10
15秒前
善学以致用应助shinn采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
cure发布了新的文献求助10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
16秒前
柯一一应助科研通管家采纳,获得10
16秒前
完美的友蕊应助xiaowang采纳,获得10
16秒前
柯一一应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498