Bayesian learning of Covid-19 vaccine safety while incorporating adverse events ontology

2019年冠状病毒病(COVID-19) 本体论 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 贝叶斯概率 2019-20冠状病毒爆发 不利影响 计算机科学 医学 数据科学 人工智能 病毒学 药理学 内科学 哲学 疾病 认识论 爆发 传染病(医学专业)
作者
Bangyao Zhao,Žhong Yuan,Jian Kang,Lili Zhao
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:17 (4) 被引量:1
标识
DOI:10.1214/23-aoas1743
摘要

While vaccines are crucial to end the COVID-19 pandemic, public confidence in vaccine safety has always been vulnerable. Many statistical methods have been applied to VAERS (Vaccine Adverse Event Reporting System) database to study the safety of COVID-19 vaccines. However, none of these methods considered the adverse event (AE) ontology. AEs are naturally related; for example, events of retching, dysphagia, and reflux are all related to an abnormal digestive system. Explicitly bringing AE relationships into the model can aid in the detection of true AE signals amid the noise while reducing false positives. We propose a Bayesian graph-assisted signal selection (BGrass) model to simultaneously estimate all AEs while incorporating the network of dependence between AEs. Under a fully Bayesian inference framework, we also propose a negative control approach to mitigate the reporting bias and an enrichment approach to detecting AE groups of concern. For posterior computation we construct an equivalent model representation and develop an efficient Gibbs sampler. We evaluate the performance of BGrass via extensive simulations. To study the safety of COVID-19 vaccines, we apply BGrass to analyze approximately one million VAERS reports (01/01/2016-12/24/2021) involving more than 800 AEs. In particular, we found that blood clots (including deep vein thrombosis, thrombosis, and pulmonary embolism) are more likely to be reported after COVID-19 vaccination, compared to influenza vaccines. They are also reported more often for Johnson & Johnson-Janssen vaccine, compared to mRNA-based COVID-19 vaccines. A user-friendly R package BGrass that implements the proposed methods to assess vaccine safety is included in the Supplementary Material and is publicly available at https://github.com/BangyaoZhao/BGrass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王同学完成签到 ,获得积分10
刚刚
艳艳宝完成签到 ,获得积分10
刚刚
1秒前
ZM完成签到 ,获得积分10
2秒前
jiangjiang完成签到,获得积分10
2秒前
李健应助宫冷雁采纳,获得10
4秒前
英姑应助魁梧的雨双采纳,获得10
4秒前
haha完成签到,获得积分10
7秒前
7秒前
酷波er应助孙意冉采纳,获得10
9秒前
QQ完成签到,获得积分20
9秒前
称心文博发布了新的文献求助30
11秒前
顾矜应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得30
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
QQ发布了新的文献求助10
15秒前
幸福完成签到 ,获得积分10
16秒前
17秒前
称心文博完成签到,获得积分10
18秒前
asdf完成签到 ,获得积分10
23秒前
GuMingyang完成签到,获得积分10
23秒前
yanzzz发布了新的文献求助10
23秒前
cavendipeng发布了新的文献求助10
26秒前
26秒前
小二郎应助Lillian采纳,获得10
27秒前
27秒前
28秒前
西柚完成签到,获得积分10
28秒前
29秒前
百发百中完成签到,获得积分10
29秒前
yanzzz完成签到,获得积分20
30秒前
30秒前
31秒前
32秒前
孙意冉发布了新的文献求助10
32秒前
lxf_123完成签到,获得积分10
33秒前
33秒前
34秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350888
求助须知:如何正确求助?哪些是违规求助? 2976477
关于积分的说明 8675121
捐赠科研通 2657638
什么是DOI,文献DOI怎么找? 1455181
科研通“疑难数据库(出版商)”最低求助积分说明 673736
邀请新用户注册赠送积分活动 664225