已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DGPF-RENet: A Low Data Dependence Network With Low Training Iterations for Hyperspectral Image Classification

计算机科学 冗余(工程) 高光谱成像 人工智能 数据冗余 像素 人工神经网络 地形 模式识别(心理学) 特征(语言学) 计算机视觉 生态学 语言学 生物 操作系统 哲学
作者
Jialei Zhan,Yuhang Xie,Jiajia Guo,Yaowen Hu,Guoxiong Zhou,Weiwei Cai,Yanfeng Wang,Aibin Chen,Liu Xie,Maopeng Li,Liujun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-21 被引量:4
标识
DOI:10.1109/tgrs.2023.3306891
摘要

The classification of ground objects from hyperspectral images (HSIs) is of great importance for human perception of information about the terrain and landscape. HSIs have numerous dimensions, and obtaining the data is difficult. The issue of slow convergence of neural network training is brought on by high dimensional data, and the neural network's performance is impacted by the challenging data acquisition process. In order to achieve the effects of low data dependence and rapid convergence, we propose a redundancy elimination network architecture with decoupled-gaze attention mechanism and phantom fractal modules (DGPF-RENet) for HSIs classification. First, we propose the decoupled-gaze attention mechanism (DGA) to make full use of correlation between adjacent bands and the continuity of neighboring pixels in HSIs. Then, a redundancy elimination module (REM) is proposed to reduce the number of feature points and eliminate redundant information while preserving the contextual information and relationships between pixels. Finally, the phantom fractal module (PFM) is proposed, which improves the scale of feature learning by fractalising convolutions at multiple scales. Four publicly available HSIs datasets, including Indian Pines, Salinas, DFC2018, and WHUHi-HongHu, were used in our experiments. According to experimental findings, when compared to other state-of-the-art methods, our method performs best with a small number of training samples and few iterations. We have released our code and models at https://github.com/yuhua666/DGPF-RENet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
乔达摩完成签到 ,获得积分10
3秒前
犹豫梦菡完成签到,获得积分10
4秒前
4秒前
怡然枫叶发布了新的文献求助10
5秒前
LX发布了新的文献求助30
6秒前
小蘑菇应助顺利的边牧采纳,获得10
8秒前
上善若水呦完成签到 ,获得积分10
11秒前
13秒前
乔达摩悉达多完成签到 ,获得积分10
14秒前
Jacquielin完成签到 ,获得积分10
15秒前
15秒前
16秒前
伊萨卡完成签到 ,获得积分10
16秒前
17秒前
18秒前
韩soso完成签到,获得积分10
21秒前
mmyhn发布了新的文献求助10
21秒前
Coral.发布了新的文献求助10
22秒前
LX完成签到,获得积分10
24秒前
工藤新一完成签到,获得积分10
25秒前
as12发布了新的文献求助10
26秒前
大模型应助工藤新一采纳,获得10
29秒前
30秒前
32秒前
HC应助灯飞采纳,获得10
35秒前
36秒前
38秒前
jpc完成签到,获得积分10
41秒前
42秒前
所所应助叫秋田犬的猫采纳,获得10
43秒前
blue发布了新的文献求助10
44秒前
leoelizabeth完成签到 ,获得积分10
45秒前
47秒前
Dr.miao发布了新的文献求助10
47秒前
48秒前
彳亍发布了新的文献求助10
49秒前
希望天下0贩的0应助ChiaJan采纳,获得10
50秒前
50秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994330
求助须知:如何正确求助?哪些是违规求助? 3534764
关于积分的说明 11266452
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749