DGPF-RENet: A Low Data Dependence Network With Low Training Iterations for Hyperspectral Image Classification

计算机科学 冗余(工程) 高光谱成像 人工智能 数据冗余 像素 人工神经网络 地形 模式识别(心理学) 特征(语言学) 计算机视觉 生态学 语言学 哲学 生物 操作系统
作者
Jialei Zhan,Yuhang Xie,Jiajia Guo,Yaowen Hu,Guoxiong Zhou,Weiwei Cai,Yanfeng Wang,Aibin Chen,Liu Xie,Maopeng Li,Liujun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-21 被引量:4
标识
DOI:10.1109/tgrs.2023.3306891
摘要

The classification of ground objects from hyperspectral images (HSIs) is of great importance for human perception of information about the terrain and landscape. HSIs have numerous dimensions, and obtaining the data is difficult. The issue of slow convergence of neural network training is brought on by high dimensional data, and the neural network's performance is impacted by the challenging data acquisition process. In order to achieve the effects of low data dependence and rapid convergence, we propose a redundancy elimination network architecture with decoupled-gaze attention mechanism and phantom fractal modules (DGPF-RENet) for HSIs classification. First, we propose the decoupled-gaze attention mechanism (DGA) to make full use of correlation between adjacent bands and the continuity of neighboring pixels in HSIs. Then, a redundancy elimination module (REM) is proposed to reduce the number of feature points and eliminate redundant information while preserving the contextual information and relationships between pixels. Finally, the phantom fractal module (PFM) is proposed, which improves the scale of feature learning by fractalising convolutions at multiple scales. Four publicly available HSIs datasets, including Indian Pines, Salinas, DFC2018, and WHUHi-HongHu, were used in our experiments. According to experimental findings, when compared to other state-of-the-art methods, our method performs best with a small number of training samples and few iterations. We have released our code and models at https://github.com/yuhua666/DGPF-RENet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心浩阑发布了新的文献求助10
刚刚
hgh发布了新的文献求助10
刚刚
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
LIULIAN应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
聚砂成塔完成签到,获得积分10
1秒前
One发布了新的文献求助10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
希望天下0贩的0应助甾醇采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
changaipei应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
体贴薯片发布了新的文献求助10
2秒前
2秒前
薰硝壤应助科研通管家采纳,获得10
2秒前
虚幻的土豆完成签到,获得积分10
2秒前
ding应助科研通管家采纳,获得10
2秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
怕黑以筠完成签到,获得积分10
3秒前
伈X发布了新的文献求助10
3秒前
小明日天完成签到,获得积分10
4秒前
香蕉觅云应助wangjianyu采纳,获得10
5秒前
5秒前
Hello应助One采纳,获得10
5秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156728
求助须知:如何正确求助?哪些是违规求助? 2808129
关于积分的说明 7876351
捐赠科研通 2466523
什么是DOI,文献DOI怎么找? 1312903
科研通“疑难数据库(出版商)”最低求助积分说明 630304
版权声明 601919