Multi-task deep learning-based radiomic nomogram for prognostic prediction in locoregionally advanced nasopharyngeal carcinoma

列线图 鼻咽癌 医学 接收机工作特性 一致性 置信区间 人工智能 内科学 深度学习 肿瘤科 无进展生存期 放射科 总体生存率 放射治疗 计算机科学
作者
Bingxin Gu,Mingyuan Meng,Mingzhen Xu,Dagan Feng,Lei Bi,Jinman Kim,Shaoli Song
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:50 (13): 3996-4009 被引量:17
标识
DOI:10.1007/s00259-023-06399-7
摘要

Abstract Purpose Prognostic prediction is crucial to guide individual treatment for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients. Recently, multi-task deep learning was explored for joint prognostic prediction and tumor segmentation in various cancers, resulting in promising performance. This study aims to evaluate the clinical value of multi-task deep learning for prognostic prediction in LA-NPC patients. Methods A total of 886 LA-NPC patients acquired from two medical centers were enrolled including clinical data, [ 18 F]FDG PET/CT images, and follow-up of progression-free survival (PFS). We adopted a deep multi-task survival model (DeepMTS) to jointly perform prognostic prediction (DeepMTS-Score) and tumor segmentation from FDG-PET/CT images. The DeepMTS-derived segmentation masks were leveraged to extract handcrafted radiomics features, which were also used for prognostic prediction (AutoRadio-Score). Finally, we developed a multi-task deep learning-based radiomic (MTDLR) nomogram by integrating DeepMTS-Score, AutoRadio-Score, and clinical data. Harrell's concordance indices (C-index) and time-independent receiver operating characteristic (ROC) analysis were used to evaluate the discriminative ability of the proposed MTDLR nomogram. For patient stratification, the PFS rates of high- and low-risk patients were calculated using Kaplan–Meier method and compared with the observed PFS probability. Results Our MTDLR nomogram achieved C-index of 0.818 (95% confidence interval (CI): 0.785–0.851), 0.752 (95% CI: 0.638–0.865), and 0.717 (95% CI: 0.641–0.793) and area under curve (AUC) of 0.859 (95% CI: 0.822–0.895), 0.769 (95% CI: 0.642–0.896), and 0.730 (95% CI: 0.634–0.826) in the training, internal validation, and external validation cohorts, which showed a statistically significant improvement over conventional radiomic nomograms. Our nomogram also divided patients into significantly different high- and low-risk groups. Conclusion Our study demonstrated that MTDLR nomogram can perform reliable and accurate prognostic prediction in LA-NPC patients, and also enabled better patient stratification, which could facilitate personalized treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
烂漫的金针菇完成签到,获得积分10
2秒前
李健应助优雅的山柳采纳,获得10
2秒前
无极微光给LIANG的求助进行了留言
3秒前
4秒前
胡沈焕然完成签到,获得积分20
4秒前
乐观鑫鹏发布了新的文献求助10
4秒前
catherine发布了新的文献求助20
4秒前
5秒前
费老五完成签到 ,获得积分10
5秒前
所所应助黎金鑫采纳,获得10
5秒前
6秒前
黄柠檬完成签到,获得积分10
6秒前
柴柴柴完成签到,获得积分20
7秒前
CipherSage应助困困酱采纳,获得10
7秒前
香蕉觅云应助MT采纳,获得10
7秒前
7秒前
Jasper应助亚铁氰化钾采纳,获得10
7秒前
CodeCraft应助Annie采纳,获得30
8秒前
斯文败类应助能干雁凡采纳,获得10
9秒前
9秒前
无极微光应助开朗颜演采纳,获得20
9秒前
微笑向卉发布了新的文献求助10
10秒前
10秒前
SciGPT应助徐爱琳采纳,获得10
10秒前
11秒前
刘威发布了新的文献求助10
11秒前
搞怪的若灵完成签到,获得积分10
11秒前
王了了发布了新的文献求助10
12秒前
12秒前
活力菠萝发布了新的文献求助10
12秒前
zzrg发布了新的文献求助10
13秒前
13秒前
yufeizhle完成签到 ,获得积分10
13秒前
14秒前
14秒前
丘比特应助bbbbhr采纳,获得10
14秒前
所所应助孤巷的猫采纳,获得10
14秒前
Mississippiecho完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578243
求助须知:如何正确求助?哪些是违规求助? 4663137
关于积分的说明 14744830
捐赠科研通 4603883
什么是DOI,文献DOI怎么找? 2526739
邀请新用户注册赠送积分活动 1496343
关于科研通互助平台的介绍 1465712