亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-task deep learning-based radiomic nomogram for prognostic prediction in locoregionally advanced nasopharyngeal carcinoma

列线图 鼻咽癌 医学 接收机工作特性 一致性 置信区间 人工智能 内科学 深度学习 肿瘤科 无进展生存期 放射科 总体生存率 放射治疗 计算机科学
作者
Bingxin Gu,Mingyuan Meng,Mingzhen Xu,Dagan Feng,Lei Bi,Jinman Kim,Shaoli Song
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:50 (13): 3996-4009 被引量:17
标识
DOI:10.1007/s00259-023-06399-7
摘要

Abstract Purpose Prognostic prediction is crucial to guide individual treatment for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients. Recently, multi-task deep learning was explored for joint prognostic prediction and tumor segmentation in various cancers, resulting in promising performance. This study aims to evaluate the clinical value of multi-task deep learning for prognostic prediction in LA-NPC patients. Methods A total of 886 LA-NPC patients acquired from two medical centers were enrolled including clinical data, [ 18 F]FDG PET/CT images, and follow-up of progression-free survival (PFS). We adopted a deep multi-task survival model (DeepMTS) to jointly perform prognostic prediction (DeepMTS-Score) and tumor segmentation from FDG-PET/CT images. The DeepMTS-derived segmentation masks were leveraged to extract handcrafted radiomics features, which were also used for prognostic prediction (AutoRadio-Score). Finally, we developed a multi-task deep learning-based radiomic (MTDLR) nomogram by integrating DeepMTS-Score, AutoRadio-Score, and clinical data. Harrell's concordance indices (C-index) and time-independent receiver operating characteristic (ROC) analysis were used to evaluate the discriminative ability of the proposed MTDLR nomogram. For patient stratification, the PFS rates of high- and low-risk patients were calculated using Kaplan–Meier method and compared with the observed PFS probability. Results Our MTDLR nomogram achieved C-index of 0.818 (95% confidence interval (CI): 0.785–0.851), 0.752 (95% CI: 0.638–0.865), and 0.717 (95% CI: 0.641–0.793) and area under curve (AUC) of 0.859 (95% CI: 0.822–0.895), 0.769 (95% CI: 0.642–0.896), and 0.730 (95% CI: 0.634–0.826) in the training, internal validation, and external validation cohorts, which showed a statistically significant improvement over conventional radiomic nomograms. Our nomogram also divided patients into significantly different high- and low-risk groups. Conclusion Our study demonstrated that MTDLR nomogram can perform reliable and accurate prognostic prediction in LA-NPC patients, and also enabled better patient stratification, which could facilitate personalized treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助尹恩惠采纳,获得10
2秒前
清爽夜雪发布了新的文献求助10
2秒前
2秒前
浓浓完成签到 ,获得积分10
3秒前
3秒前
3秒前
LH完成签到,获得积分10
5秒前
木卫二完成签到 ,获得积分10
5秒前
kiki发布了新的文献求助10
8秒前
吧唧吧唧发布了新的文献求助10
9秒前
10秒前
勤恳冰淇淋完成签到 ,获得积分10
13秒前
CodeCraft应助张张采纳,获得10
18秒前
22222发布了新的文献求助30
19秒前
清爽夜雪发布了新的文献求助10
20秒前
乐乐应助kiki采纳,获得10
26秒前
888发布了新的文献求助30
26秒前
甜甜的冷霜完成签到,获得积分10
27秒前
29秒前
xiaochao完成签到,获得积分10
29秒前
GingerF完成签到 ,获得积分0
33秒前
星落枝头发布了新的文献求助10
34秒前
清爽夜雪完成签到,获得积分10
35秒前
36秒前
明人不放暗屁完成签到 ,获得积分10
36秒前
科研小趴菜完成签到 ,获得积分10
37秒前
39秒前
40秒前
123456完成签到,获得积分10
41秒前
一二完成签到 ,获得积分10
43秒前
44秒前
123456发布了新的文献求助10
45秒前
科研通AI5应助机灵的成协采纳,获得10
46秒前
Bell完成签到,获得积分10
48秒前
研友_VZG7GZ应助酷炫的面包采纳,获得10
49秒前
金鱼发布了新的文献求助10
51秒前
56秒前
桐桐应助北林采纳,获得10
58秒前
核桃应助ff相信好事来临采纳,获得10
1分钟前
张张发布了新的文献求助10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126569
求助须知:如何正确求助?哪些是违规求助? 4330013
关于积分的说明 13492609
捐赠科研通 4165224
什么是DOI,文献DOI怎么找? 2283306
邀请新用户注册赠送积分活动 1284279
关于科研通互助平台的介绍 1223910