亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-task deep learning-based radiomic nomogram for prognostic prediction in locoregionally advanced nasopharyngeal carcinoma

列线图 鼻咽癌 医学 接收机工作特性 一致性 置信区间 人工智能 内科学 深度学习 肿瘤科 无进展生存期 放射科 总体生存率 放射治疗 计算机科学
作者
Bingxin Gu,Mingyuan Meng,Mingzhen Xu,David Dagan Feng,Lei Bi,Jinman Kim,Shaoli Song
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:50 (13): 3996-4009 被引量:1
标识
DOI:10.1007/s00259-023-06399-7
摘要

Abstract Purpose Prognostic prediction is crucial to guide individual treatment for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients. Recently, multi-task deep learning was explored for joint prognostic prediction and tumor segmentation in various cancers, resulting in promising performance. This study aims to evaluate the clinical value of multi-task deep learning for prognostic prediction in LA-NPC patients. Methods A total of 886 LA-NPC patients acquired from two medical centers were enrolled including clinical data, [ 18 F]FDG PET/CT images, and follow-up of progression-free survival (PFS). We adopted a deep multi-task survival model (DeepMTS) to jointly perform prognostic prediction (DeepMTS-Score) and tumor segmentation from FDG-PET/CT images. The DeepMTS-derived segmentation masks were leveraged to extract handcrafted radiomics features, which were also used for prognostic prediction (AutoRadio-Score). Finally, we developed a multi-task deep learning-based radiomic (MTDLR) nomogram by integrating DeepMTS-Score, AutoRadio-Score, and clinical data. Harrell's concordance indices (C-index) and time-independent receiver operating characteristic (ROC) analysis were used to evaluate the discriminative ability of the proposed MTDLR nomogram. For patient stratification, the PFS rates of high- and low-risk patients were calculated using Kaplan–Meier method and compared with the observed PFS probability. Results Our MTDLR nomogram achieved C-index of 0.818 (95% confidence interval (CI): 0.785–0.851), 0.752 (95% CI: 0.638–0.865), and 0.717 (95% CI: 0.641–0.793) and area under curve (AUC) of 0.859 (95% CI: 0.822–0.895), 0.769 (95% CI: 0.642–0.896), and 0.730 (95% CI: 0.634–0.826) in the training, internal validation, and external validation cohorts, which showed a statistically significant improvement over conventional radiomic nomograms. Our nomogram also divided patients into significantly different high- and low-risk groups. Conclusion Our study demonstrated that MTDLR nomogram can perform reliable and accurate prognostic prediction in LA-NPC patients, and also enabled better patient stratification, which could facilitate personalized treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhl完成签到,获得积分10
2秒前
atdawn1998完成签到 ,获得积分10
2秒前
并肩完成签到,获得积分10
7秒前
bon999发布了新的文献求助10
8秒前
10秒前
Delight完成签到 ,获得积分10
17秒前
麻辣小龙虾完成签到,获得积分10
19秒前
雍雍完成签到 ,获得积分10
24秒前
25秒前
13134完成签到,获得积分10
36秒前
边曦完成签到 ,获得积分10
37秒前
caitlin完成签到 ,获得积分10
38秒前
CodeCraft应助fleeper采纳,获得10
39秒前
婷123完成签到 ,获得积分10
40秒前
桃子e完成签到 ,获得积分10
40秒前
43秒前
勤恳的TT完成签到 ,获得积分10
51秒前
可爱的函函应助孙策采纳,获得10
51秒前
彭于晏应助原野小年采纳,获得10
59秒前
李爱国应助阿文采纳,获得10
1分钟前
1分钟前
1分钟前
鳗鱼邪欢完成签到 ,获得积分10
1分钟前
小金星星完成签到 ,获得积分10
1分钟前
李健的小迷弟应助kk采纳,获得10
1分钟前
甜甜的紫丝完成签到 ,获得积分10
1分钟前
孙策发布了新的文献求助10
1分钟前
原野小年发布了新的文献求助10
1分钟前
阿泽完成签到 ,获得积分10
1分钟前
JY应助科研通管家采纳,获得10
1分钟前
bon999关注了科研通微信公众号
1分钟前
孙策完成签到,获得积分10
1分钟前
1分钟前
糖果呖咕呖咕完成签到,获得积分10
1分钟前
1分钟前
MoonFlows完成签到 ,获得积分10
1分钟前
和谐蛋蛋完成签到,获得积分10
1分钟前
JANE完成签到 ,获得积分10
1分钟前
2分钟前
丘比特应助阿恺采纳,获得10
2分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139490
求助须知:如何正确求助?哪些是违规求助? 2790349
关于积分的说明 7795082
捐赠科研通 2446818
什么是DOI,文献DOI怎么找? 1301448
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146