已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detecting Adverse Pathology of Prostate Cancer With a Deep Learning Approach Based on a 3D Swin‐Transformer Model and Biparametric MRI: A Multicenter Retrospective Study

医学 前列腺癌 前列腺切除术 接收机工作特性 放射科 前列腺 回顾性队列研究 前列腺活检 队列 活检 病理 内科学 癌症
作者
Litao Zhao,Jie Bao,Ximing Wang,Xiaomeng Qiao,Junkang Shen,Yueyue Zhang,Pengfei Jin,Yanting Ji,Ji Zhang,Yueting Su,Libiao Ji,Zhenkai Li,Jian Lü,Chunhong Hu,Hailin Shen,Jie Tian,Jiangang Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (6): 2101-2112 被引量:4
标识
DOI:10.1002/jmri.28963
摘要

Background Accurately detecting adverse pathology (AP) presence in prostate cancer patients is important for personalized clinical decision‐making. Radiologists' assessment based on clinical characteristics showed poor performance for detecting AP presence. Purpose To develop deep learning models for detecting AP presence, and to compare the performance of these models with those of a clinical model (CM) and radiologists' interpretation (RI). Study Type Retrospective. Population Totally, 616 men from six institutions who underwent radical prostatectomy, were divided into a training cohort (508 patients from five institutions) and an external validation cohort (108 patients from one institution). Field Strength/Sequences T2‐weighted imaging with a turbo spin echo sequence and diffusion‐weighted imaging with a single‐shot echo plane‐imaging sequence at 3.0 T. Assessment The reference standard for AP was histopathological extracapsular extension, seminal vesicle invasion, or positive surgical margins. A deep learning model based on the Swin‐Transformer network (TransNet) was developed for detecting AP. An integrated model was also developed, which combined TransNet signature with clinical characteristics (TransCL). The clinical characteristics included biopsy Gleason grade group, Prostate Imaging Reporting and Data System scores, prostate‐specific antigen, ADC value, and the lesion maximum cross‐sectional diameter. Statistical Tests Model and radiologists' performance were assessed using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The Delong test was used to evaluate difference in AUC. P < 0.05 was considered significant. Results The AUC of TransCL for detecting AP presence was 0.813 (95% CI, 0.726–0.882), which was higher than that of TransNet (0.791 [95% CI, 0.702–0.863], P = 0.429), and significantly higher than those of CM (0.749 [95% CI, 0.656–0.827]) and RI (0.664 [95% CI, 0.566–0.752]). Data Conclusion TransNet and TransCL have potential to aid in detecting the presence of AP and some single adverse pathologic features. Level of Evidence 4 Technical Efficacy Stage 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常毛衣发布了新的文献求助10
1秒前
研友_VZG7GZ应助penny采纳,获得10
1秒前
2秒前
大气映冬发布了新的文献求助10
3秒前
香蕉觅云应助Drwang采纳,获得10
3秒前
4秒前
璨澄发布了新的文献求助10
7秒前
think1805发布了新的文献求助10
8秒前
11秒前
penny完成签到,获得积分10
12秒前
13秒前
冰渊悬月发布了新的文献求助10
14秒前
科研通AI6应助啊啊啊啊跃采纳,获得10
15秒前
15秒前
FashionBoy应助逆熵采纳,获得10
17秒前
17秒前
斯文败类应助饼饼采纳,获得10
18秒前
Ye完成签到,获得积分20
19秒前
科研通AI2S应助蓝波酱采纳,获得10
19秒前
大气映冬完成签到,获得积分10
19秒前
19秒前
21秒前
guo完成签到 ,获得积分10
23秒前
24秒前
wanci应助芸珂采纳,获得10
25秒前
25秒前
jxp发布了新的文献求助30
25秒前
think1805完成签到,获得积分10
26秒前
周老八发布了新的文献求助10
26秒前
逆熵给逆熵的求助进行了留言
27秒前
任性采萱应助科研通管家采纳,获得10
29秒前
29秒前
大模型应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得10
29秒前
烟花应助科研通管家采纳,获得10
29秒前
29秒前
万能图书馆应助健忘幻儿采纳,获得10
30秒前
ccalvintan发布了新的文献求助30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944048
求助须知:如何正确求助?哪些是违规求助? 4209151
关于积分的说明 13084727
捐赠科研通 3988606
什么是DOI,文献DOI怎么找? 2183827
邀请新用户注册赠送积分活动 1199246
关于科研通互助平台的介绍 1112013