Detecting Adverse Pathology of Prostate Cancer With a Deep Learning Approach Based on a 3D Swin‐Transformer Model and Biparametric MRI: A Multicenter Retrospective Study

医学 前列腺癌 前列腺切除术 接收机工作特性 放射科 前列腺 回顾性队列研究 前列腺活检 队列 活检 病理 内科学 癌症
作者
Litao Zhao,Jie Bao,Ximing Wang,Xiaomeng Qiao,Junkang Shen,Yueyue Zhang,Pengfei Jin,Yanting Ji,Ji Zhang,Yueting Su,Libiao Ji,Zhenkai Li,Jian Lü,Chunhong Hu,Hailin Shen,Jie Tian,Jiangang Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (6): 2101-2112 被引量:3
标识
DOI:10.1002/jmri.28963
摘要

Background Accurately detecting adverse pathology (AP) presence in prostate cancer patients is important for personalized clinical decision‐making. Radiologists' assessment based on clinical characteristics showed poor performance for detecting AP presence. Purpose To develop deep learning models for detecting AP presence, and to compare the performance of these models with those of a clinical model (CM) and radiologists' interpretation (RI). Study Type Retrospective. Population Totally, 616 men from six institutions who underwent radical prostatectomy, were divided into a training cohort (508 patients from five institutions) and an external validation cohort (108 patients from one institution). Field Strength/Sequences T2‐weighted imaging with a turbo spin echo sequence and diffusion‐weighted imaging with a single‐shot echo plane‐imaging sequence at 3.0 T. Assessment The reference standard for AP was histopathological extracapsular extension, seminal vesicle invasion, or positive surgical margins. A deep learning model based on the Swin‐Transformer network (TransNet) was developed for detecting AP. An integrated model was also developed, which combined TransNet signature with clinical characteristics (TransCL). The clinical characteristics included biopsy Gleason grade group, Prostate Imaging Reporting and Data System scores, prostate‐specific antigen, ADC value, and the lesion maximum cross‐sectional diameter. Statistical Tests Model and radiologists' performance were assessed using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The Delong test was used to evaluate difference in AUC. P < 0.05 was considered significant. Results The AUC of TransCL for detecting AP presence was 0.813 (95% CI, 0.726–0.882), which was higher than that of TransNet (0.791 [95% CI, 0.702–0.863], P = 0.429), and significantly higher than those of CM (0.749 [95% CI, 0.656–0.827]) and RI (0.664 [95% CI, 0.566–0.752]). Data Conclusion TransNet and TransCL have potential to aid in detecting the presence of AP and some single adverse pathologic features. Level of Evidence 4 Technical Efficacy Stage 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闵不悔完成签到,获得积分10
3秒前
阳光火车完成签到 ,获得积分10
4秒前
cc完成签到,获得积分10
7秒前
合适的寄灵完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI5应助cc采纳,获得10
10秒前
铜泰妍完成签到 ,获得积分10
11秒前
贝贝完成签到 ,获得积分10
16秒前
Lrcx完成签到 ,获得积分10
17秒前
Wen完成签到 ,获得积分10
18秒前
盘尼西林完成签到 ,获得积分10
20秒前
LOVE0077完成签到,获得积分10
23秒前
zhao完成签到,获得积分10
25秒前
BINBIN完成签到 ,获得积分10
35秒前
ambrose37完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
43秒前
fufufu123完成签到 ,获得积分10
47秒前
开心的大娘完成签到,获得积分10
47秒前
www完成签到 ,获得积分10
49秒前
末末完成签到 ,获得积分10
59秒前
无为完成签到 ,获得积分10
1分钟前
白嫖论文完成签到 ,获得积分10
1分钟前
上官若男应助忧伤的步美采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
从心随缘完成签到 ,获得积分10
1分钟前
花花发布了新的文献求助10
1分钟前
牛奶面包完成签到 ,获得积分10
1分钟前
1分钟前
岁月如歌完成签到 ,获得积分0
1分钟前
1分钟前
Li完成签到,获得积分10
1分钟前
张琨完成签到 ,获得积分10
1分钟前
1分钟前
sunnyqqz完成签到,获得积分10
1分钟前
热情的乘风完成签到,获得积分20
1分钟前
1分钟前
霍凡白完成签到,获得积分10
1分钟前
1分钟前
Feng发布了新的文献求助20
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022