Detecting Adverse Pathology of Prostate Cancer With a Deep Learning Approach Based on a 3D Swin‐Transformer Model and Biparametric MRI: A Multicenter Retrospective Study

医学 前列腺癌 前列腺切除术 接收机工作特性 放射科 前列腺 回顾性队列研究 前列腺活检 队列 活检 病理 内科学 癌症
作者
Litao Zhao,Jie Bao,Ximing Wang,Xiaomeng Qiao,Junkang Shen,Yueyue Zhang,Pengfei Jin,Yanting Ji,Ji Zhang,Yueting Su,Libiao Ji,Zhenkai Li,Jian Lü,Chunhong Hu,Hailin Shen,Jie Tian,Jiangang Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (6): 2101-2112 被引量:3
标识
DOI:10.1002/jmri.28963
摘要

Background Accurately detecting adverse pathology (AP) presence in prostate cancer patients is important for personalized clinical decision‐making. Radiologists' assessment based on clinical characteristics showed poor performance for detecting AP presence. Purpose To develop deep learning models for detecting AP presence, and to compare the performance of these models with those of a clinical model (CM) and radiologists' interpretation (RI). Study Type Retrospective. Population Totally, 616 men from six institutions who underwent radical prostatectomy, were divided into a training cohort (508 patients from five institutions) and an external validation cohort (108 patients from one institution). Field Strength/Sequences T2‐weighted imaging with a turbo spin echo sequence and diffusion‐weighted imaging with a single‐shot echo plane‐imaging sequence at 3.0 T. Assessment The reference standard for AP was histopathological extracapsular extension, seminal vesicle invasion, or positive surgical margins. A deep learning model based on the Swin‐Transformer network (TransNet) was developed for detecting AP. An integrated model was also developed, which combined TransNet signature with clinical characteristics (TransCL). The clinical characteristics included biopsy Gleason grade group, Prostate Imaging Reporting and Data System scores, prostate‐specific antigen, ADC value, and the lesion maximum cross‐sectional diameter. Statistical Tests Model and radiologists' performance were assessed using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The Delong test was used to evaluate difference in AUC. P < 0.05 was considered significant. Results The AUC of TransCL for detecting AP presence was 0.813 (95% CI, 0.726–0.882), which was higher than that of TransNet (0.791 [95% CI, 0.702–0.863], P = 0.429), and significantly higher than those of CM (0.749 [95% CI, 0.656–0.827]) and RI (0.664 [95% CI, 0.566–0.752]). Data Conclusion TransNet and TransCL have potential to aid in detecting the presence of AP and some single adverse pathologic features. Level of Evidence 4 Technical Efficacy Stage 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
背后海亦发布了新的文献求助10
10秒前
三木完成签到 ,获得积分10
22秒前
无私翎完成签到 ,获得积分10
24秒前
一勺四季完成签到 ,获得积分10
32秒前
香菜大王完成签到 ,获得积分10
34秒前
38秒前
40秒前
SCIER完成签到 ,获得积分10
41秒前
辛勤的喉完成签到 ,获得积分10
41秒前
zoe完成签到 ,获得积分10
41秒前
ACMI发布了新的文献求助10
45秒前
47秒前
hyxu678完成签到,获得积分10
50秒前
Jialing发布了新的文献求助10
52秒前
小郭完成签到 ,获得积分10
58秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
平淡访冬完成签到 ,获得积分10
1分钟前
Jialing完成签到,获得积分10
1分钟前
mol完成签到 ,获得积分10
1分钟前
科研小白发布了新的文献求助10
1分钟前
大金鱼完成签到 ,获得积分10
1分钟前
风清扬完成签到,获得积分0
1分钟前
1523完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
缥缈绮兰发布了新的文献求助10
1分钟前
秋秋糖xte发布了新的文献求助10
1分钟前
又又完成签到,获得积分10
1分钟前
韧迹完成签到 ,获得积分0
1分钟前
郭德久完成签到 ,获得积分0
1分钟前
番茄小超人2号完成签到 ,获得积分10
1分钟前
qwe发布了新的文献求助10
1分钟前
笨笨忘幽完成签到,获得积分10
1分钟前
美丽完成签到 ,获得积分10
1分钟前
CLTTT完成签到,获得积分10
1分钟前
居里姐姐完成签到 ,获得积分10
1分钟前
现实的曼安完成签到 ,获得积分10
2分钟前
sunzhengkui完成签到,获得积分10
2分钟前
MrChew完成签到 ,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167340
捐赠科研通 3248714
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875065
科研通“疑难数据库(出版商)”最低求助积分说明 804664