Detecting Adverse Pathology of Prostate Cancer With a Deep Learning Approach Based on a 3D Swin‐Transformer Model and Biparametric MRI: A Multicenter Retrospective Study

医学 前列腺癌 前列腺切除术 接收机工作特性 放射科 前列腺 回顾性队列研究 前列腺活检 队列 活检 病理 内科学 癌症
作者
Litao Zhao,Jie Bao,Ximing Wang,Xiaomeng Qiao,Junkang Shen,Yueyue Zhang,Pengfei Jin,Yanting Ji,Ji Zhang,Yueting Su,Libiao Ji,Zhenkai Li,Jian Lü,Chunhong Hu,Hailin Shen,Jie Tian,Jiangang Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (6): 2101-2112 被引量:3
标识
DOI:10.1002/jmri.28963
摘要

Background Accurately detecting adverse pathology (AP) presence in prostate cancer patients is important for personalized clinical decision‐making. Radiologists' assessment based on clinical characteristics showed poor performance for detecting AP presence. Purpose To develop deep learning models for detecting AP presence, and to compare the performance of these models with those of a clinical model (CM) and radiologists' interpretation (RI). Study Type Retrospective. Population Totally, 616 men from six institutions who underwent radical prostatectomy, were divided into a training cohort (508 patients from five institutions) and an external validation cohort (108 patients from one institution). Field Strength/Sequences T2‐weighted imaging with a turbo spin echo sequence and diffusion‐weighted imaging with a single‐shot echo plane‐imaging sequence at 3.0 T. Assessment The reference standard for AP was histopathological extracapsular extension, seminal vesicle invasion, or positive surgical margins. A deep learning model based on the Swin‐Transformer network (TransNet) was developed for detecting AP. An integrated model was also developed, which combined TransNet signature with clinical characteristics (TransCL). The clinical characteristics included biopsy Gleason grade group, Prostate Imaging Reporting and Data System scores, prostate‐specific antigen, ADC value, and the lesion maximum cross‐sectional diameter. Statistical Tests Model and radiologists' performance were assessed using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The Delong test was used to evaluate difference in AUC. P < 0.05 was considered significant. Results The AUC of TransCL for detecting AP presence was 0.813 (95% CI, 0.726–0.882), which was higher than that of TransNet (0.791 [95% CI, 0.702–0.863], P = 0.429), and significantly higher than those of CM (0.749 [95% CI, 0.656–0.827]) and RI (0.664 [95% CI, 0.566–0.752]). Data Conclusion TransNet and TransCL have potential to aid in detecting the presence of AP and some single adverse pathologic features. Level of Evidence 4 Technical Efficacy Stage 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学习完成签到 ,获得积分10
1秒前
大气的尔蓝完成签到,获得积分10
1秒前
RR发布了新的文献求助10
1秒前
Tom完成签到,获得积分10
2秒前
标致冬日完成签到,获得积分10
2秒前
conlensce完成签到,获得积分10
2秒前
聪慧语山完成签到 ,获得积分10
2秒前
gaojing完成签到,获得积分10
3秒前
3秒前
Zxffei发布了新的文献求助10
3秒前
vera完成签到 ,获得积分10
3秒前
孤独听雨的猫完成签到 ,获得积分10
3秒前
风趣飞柏发布了新的文献求助10
3秒前
Stefano发布了新的文献求助10
4秒前
lllym完成签到 ,获得积分10
4秒前
三金完成签到,获得积分10
4秒前
hk1900发布了新的文献求助10
4秒前
落后十八完成签到,获得积分10
5秒前
南庭完成签到,获得积分10
5秒前
maaicui完成签到,获得积分10
5秒前
轻松蘑菇发布了新的文献求助10
6秒前
谨慎的友安完成签到 ,获得积分10
6秒前
green完成签到,获得积分10
7秒前
李健应助阿虎采纳,获得10
8秒前
xixi完成签到,获得积分20
8秒前
9秒前
CipherSage应助崛起之邦采纳,获得10
9秒前
所所应助651采纳,获得10
11秒前
RR完成签到,获得积分20
11秒前
科研通AI5应助Riwamahai采纳,获得10
12秒前
热情的天蓝应助平常亦凝采纳,获得10
14秒前
Baraka完成签到,获得积分10
14秒前
科研混子完成签到,获得积分10
14秒前
星辰大海应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
香蕉觅云应助风趣飞柏采纳,获得10
15秒前
正直的广缘完成签到 ,获得积分10
15秒前
binz完成签到,获得积分10
15秒前
简单的元珊完成签到,获得积分10
16秒前
Crrr发布了新的文献求助10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746388
求助须知:如何正确求助?哪些是违规求助? 3289255
关于积分的说明 10063382
捐赠科研通 3005672
什么是DOI,文献DOI怎么找? 1650297
邀请新用户注册赠送积分活动 785821
科研通“疑难数据库(出版商)”最低求助积分说明 751269