VRLA battery fault prediction for data center based on random forest model and feature enhancement method

铅酸蓄电池 电池(电) 可靠性工程 铅酸蓄电池 电压 试验数据 断层(地质) 计算机科学 数据中心 功率(物理) 工程类 数据挖掘 电气工程 物理 量子力学 地震学 程序设计语言 地质学 操作系统
作者
Xinhan Li,Aiping Pang,Wen Yang,Qianchuan Zhao
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108666-108666 被引量:3
标识
DOI:10.1016/j.est.2023.108666
摘要

The Valve-Regulated Lead-Acid (VRLA) battery is an important part of data center power supply system. Battery failure will threaten the safe operation of the data center. How to predict the impending battery failure in advance is an urgent problem to be solved to ensure the operation safety of the data center. However, batteries in such precise data centers rarely fail. Few faulty samples cause extreme imbalance between normal samples and faulty samples. In the data center site, the battery is usually in a floating state and the battery charge-discharge cycle times are less. As a result, the obtained battery data has a single working condition. In addition, VRLA batteries are faced with the problems of limited observation information (large amount of data but low data dimension, only voltage, resistance and temperature collected directly from sensors). In this paper, a feature enhancement method is proposed by analyzing the working characteristics of VRLA batteries in the data center. This method extends the two-dimensional characteristics (voltage, resistance) of battery to nine-dimensional characteristics to solve the problem of limited observation information of VRLA battery. The problem of extreme imbalance between normal samples and faulty samples of battery is solved based on clustering undersampling method. Based on the above two methods, a VRLA battery fault classification prediction model is proposed. The nine-month operation data of 1000 VRLA battery were randomly selected from a data center and combined with the simulated fault samples to form a test set. The test results show that the F-score value of the model is increased from 54.5 % to 97.5 % after the clustering undersampling method and the feature enhancement method proposed in this paper. Compared with the VRLA battery replacement strategy recommended in IEEE STD 1188-2005 on this test set, the method can predict the impending battery failure at least 3 days in advance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱煎饼发布了新的文献求助30
1秒前
1秒前
曹梦梦完成签到,获得积分10
1秒前
1秒前
风趣霆完成签到,获得积分10
2秒前
2秒前
2秒前
小二郎应助Sigyn采纳,获得10
2秒前
科研通AI5应助不对也没错采纳,获得10
2秒前
lyn完成签到,获得积分20
2秒前
3秒前
隐形觅翠完成签到,获得积分10
3秒前
刘鹏宇发布了新的文献求助10
3秒前
lizh187完成签到 ,获得积分10
3秒前
北城完成签到,获得积分10
3秒前
自由发布了新的文献求助10
4秒前
4秒前
小豆芽儿发布了新的文献求助10
4秒前
WNL发布了新的文献求助10
5秒前
Ngu完成签到,获得积分10
5秒前
科研通AI5应助冷艳后妈采纳,获得10
5秒前
陶1122发布了新的文献求助10
5秒前
万能图书馆应助乐观期待采纳,获得30
5秒前
krystal完成签到,获得积分10
5秒前
学术大小拿完成签到,获得积分10
6秒前
迪迦完成签到,获得积分10
6秒前
7秒前
乖乖发布了新的文献求助10
7秒前
7秒前
song24517发布了新的文献求助20
7秒前
顺利琦完成签到,获得积分10
8秒前
李子发布了新的文献求助10
8秒前
pbf完成签到,获得积分10
8秒前
8秒前
lyn发布了新的文献求助30
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Twikky完成签到,获得积分10
8秒前
柚子皮应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678