亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VRLA battery fault prediction for data center based on random forest model and feature enhancement method

铅酸蓄电池 电池(电) 可靠性工程 铅酸蓄电池 电压 试验数据 断层(地质) 计算机科学 数据中心 功率(物理) 工程类 数据挖掘 电气工程 物理 量子力学 地震学 程序设计语言 地质学 操作系统
作者
Xinhan Li,Aiping Pang,Wen Yang,Qianchuan Zhao
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:72: 108666-108666 被引量:3
标识
DOI:10.1016/j.est.2023.108666
摘要

The Valve-Regulated Lead-Acid (VRLA) battery is an important part of data center power supply system. Battery failure will threaten the safe operation of the data center. How to predict the impending battery failure in advance is an urgent problem to be solved to ensure the operation safety of the data center. However, batteries in such precise data centers rarely fail. Few faulty samples cause extreme imbalance between normal samples and faulty samples. In the data center site, the battery is usually in a floating state and the battery charge-discharge cycle times are less. As a result, the obtained battery data has a single working condition. In addition, VRLA batteries are faced with the problems of limited observation information (large amount of data but low data dimension, only voltage, resistance and temperature collected directly from sensors). In this paper, a feature enhancement method is proposed by analyzing the working characteristics of VRLA batteries in the data center. This method extends the two-dimensional characteristics (voltage, resistance) of battery to nine-dimensional characteristics to solve the problem of limited observation information of VRLA battery. The problem of extreme imbalance between normal samples and faulty samples of battery is solved based on clustering undersampling method. Based on the above two methods, a VRLA battery fault classification prediction model is proposed. The nine-month operation data of 1000 VRLA battery were randomly selected from a data center and combined with the simulated fault samples to form a test set. The test results show that the F-score value of the model is increased from 54.5 % to 97.5 % after the clustering undersampling method and the feature enhancement method proposed in this paper. Compared with the VRLA battery replacement strategy recommended in IEEE STD 1188-2005 on this test set, the method can predict the impending battery failure at least 3 days in advance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
11秒前
oldcat96发布了新的文献求助10
14秒前
22秒前
思源应助oldcat96采纳,获得10
23秒前
猕猴桃发布了新的文献求助30
27秒前
情怀应助lsq采纳,获得10
31秒前
43秒前
lsq发布了新的文献求助10
47秒前
量子星尘发布了新的文献求助10
48秒前
华仔应助毅毅采纳,获得30
49秒前
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
希望天下0贩的0应助wyx采纳,获得10
1分钟前
oldcat96发布了新的文献求助10
1分钟前
紧张的书本完成签到,获得积分20
1分钟前
研友_VZG7GZ应助紧张的书本采纳,获得10
1分钟前
myg123完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
RAIN发布了新的文献求助10
2分钟前
wyx发布了新的文献求助10
2分钟前
李健的小迷弟应助bababiba采纳,获得10
2分钟前
2分钟前
追三完成签到 ,获得积分10
2分钟前
大个应助RAIN采纳,获得10
2分钟前
碳酸芙兰完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
毅毅发布了新的文献求助30
2分钟前
3分钟前
毅毅完成签到,获得积分10
3分钟前
清爽乐菱应助科研通管家采纳,获得30
3分钟前
3分钟前
3分钟前
3分钟前
Rondab应助firesquall采纳,获得10
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008109
求助须知:如何正确求助?哪些是违规求助? 3547893
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188