已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

VRLA battery fault prediction for data center based on random forest model and feature enhancement method

铅酸蓄电池 电池(电) 可靠性工程 铅酸蓄电池 电压 试验数据 断层(地质) 计算机科学 数据中心 功率(物理) 工程类 数据挖掘 电气工程 物理 量子力学 地震学 程序设计语言 地质学 操作系统
作者
Xinhan Li,Aiping Pang,Wen Yang,Qianchuan Zhao
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108666-108666 被引量:3
标识
DOI:10.1016/j.est.2023.108666
摘要

The Valve-Regulated Lead-Acid (VRLA) battery is an important part of data center power supply system. Battery failure will threaten the safe operation of the data center. How to predict the impending battery failure in advance is an urgent problem to be solved to ensure the operation safety of the data center. However, batteries in such precise data centers rarely fail. Few faulty samples cause extreme imbalance between normal samples and faulty samples. In the data center site, the battery is usually in a floating state and the battery charge-discharge cycle times are less. As a result, the obtained battery data has a single working condition. In addition, VRLA batteries are faced with the problems of limited observation information (large amount of data but low data dimension, only voltage, resistance and temperature collected directly from sensors). In this paper, a feature enhancement method is proposed by analyzing the working characteristics of VRLA batteries in the data center. This method extends the two-dimensional characteristics (voltage, resistance) of battery to nine-dimensional characteristics to solve the problem of limited observation information of VRLA battery. The problem of extreme imbalance between normal samples and faulty samples of battery is solved based on clustering undersampling method. Based on the above two methods, a VRLA battery fault classification prediction model is proposed. The nine-month operation data of 1000 VRLA battery were randomly selected from a data center and combined with the simulated fault samples to form a test set. The test results show that the F-score value of the model is increased from 54.5 % to 97.5 % after the clustering undersampling method and the feature enhancement method proposed in this paper. Compared with the VRLA battery replacement strategy recommended in IEEE STD 1188-2005 on this test set, the method can predict the impending battery failure at least 3 days in advance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qqer发布了新的文献求助30
1秒前
jimskylxk发布了新的文献求助10
2秒前
2秒前
搞怪山晴发布了新的文献求助10
2秒前
研友_VZG7GZ应助冥王星采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
隐形曼青应助jjdeng采纳,获得10
7秒前
恒星的恒心完成签到 ,获得积分10
8秒前
wanci应助lolly采纳,获得10
8秒前
小蘑菇应助搞怪山晴采纳,获得10
9秒前
10秒前
烟花应助徐嘎嘎采纳,获得10
11秒前
11秒前
11秒前
11秒前
舒适的方盒完成签到 ,获得积分10
11秒前
JaneChen发布了新的文献求助10
11秒前
12秒前
qqer完成签到,获得积分10
13秒前
冥王星发布了新的文献求助10
13秒前
Manta完成签到,获得积分10
14秒前
Hello应助执着的觅露采纳,获得30
14秒前
17秒前
17秒前
开心依珊发布了新的文献求助10
17秒前
孟晓晖完成签到 ,获得积分10
17秒前
20秒前
kk完成签到,获得积分10
20秒前
21秒前
djxdjt发布了新的文献求助10
21秒前
jjdeng发布了新的文献求助10
22秒前
orixero应助jimskylxk采纳,获得10
22秒前
今后应助caoyy采纳,获得10
23秒前
尝原完成签到,获得积分10
23秒前
科研通AI6.1应助小明采纳,获得10
23秒前
Aimee发布了新的文献求助30
25秒前
lydia完成签到,获得积分10
26秒前
开心依珊完成签到,获得积分20
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771909
求助须知:如何正确求助?哪些是违规求助? 5594239
关于积分的说明 15428487
捐赠科研通 4905096
什么是DOI,文献DOI怎么找? 2639208
邀请新用户注册赠送积分活动 1587085
关于科研通互助平台的介绍 1541964