VRLA battery fault prediction for data center based on random forest model and feature enhancement method

铅酸蓄电池 电池(电) 可靠性工程 铅酸蓄电池 电压 试验数据 断层(地质) 计算机科学 数据中心 功率(物理) 工程类 数据挖掘 电气工程 物理 量子力学 地震学 程序设计语言 地质学 操作系统
作者
Xinhan Li,Aiping Pang,Wen Yang,Qianchuan Zhao
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108666-108666 被引量:3
标识
DOI:10.1016/j.est.2023.108666
摘要

The Valve-Regulated Lead-Acid (VRLA) battery is an important part of data center power supply system. Battery failure will threaten the safe operation of the data center. How to predict the impending battery failure in advance is an urgent problem to be solved to ensure the operation safety of the data center. However, batteries in such precise data centers rarely fail. Few faulty samples cause extreme imbalance between normal samples and faulty samples. In the data center site, the battery is usually in a floating state and the battery charge-discharge cycle times are less. As a result, the obtained battery data has a single working condition. In addition, VRLA batteries are faced with the problems of limited observation information (large amount of data but low data dimension, only voltage, resistance and temperature collected directly from sensors). In this paper, a feature enhancement method is proposed by analyzing the working characteristics of VRLA batteries in the data center. This method extends the two-dimensional characteristics (voltage, resistance) of battery to nine-dimensional characteristics to solve the problem of limited observation information of VRLA battery. The problem of extreme imbalance between normal samples and faulty samples of battery is solved based on clustering undersampling method. Based on the above two methods, a VRLA battery fault classification prediction model is proposed. The nine-month operation data of 1000 VRLA battery were randomly selected from a data center and combined with the simulated fault samples to form a test set. The test results show that the F-score value of the model is increased from 54.5 % to 97.5 % after the clustering undersampling method and the feature enhancement method proposed in this paper. Compared with the VRLA battery replacement strategy recommended in IEEE STD 1188-2005 on this test set, the method can predict the impending battery failure at least 3 days in advance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助www采纳,获得10
刚刚
mysunshine发布了新的文献求助10
刚刚
zzt37927完成签到,获得积分10
1秒前
baba小天后完成签到,获得积分10
1秒前
线粒体关注了科研通微信公众号
1秒前
2秒前
饼子发布了新的文献求助10
2秒前
小寒0812完成签到,获得积分10
4秒前
4秒前
4秒前
Anny完成签到,获得积分10
6秒前
饱满的小懒猪关注了科研通微信公众号
6秒前
Hoooo...发布了新的文献求助10
7秒前
研友_ZlPNaZ完成签到,获得积分10
7秒前
陈诺完成签到,获得积分10
8秒前
8秒前
9秒前
周琦发布了新的文献求助10
9秒前
cherlia完成签到,获得积分10
10秒前
SciGPT应助打工不可能采纳,获得10
10秒前
13秒前
JamesPei应助戈惜采纳,获得10
14秒前
15秒前
xiaodaiduyan发布了新的文献求助10
15秒前
SciGPT应助踏实的枕头采纳,获得10
15秒前
Owen应助夕荀采纳,获得10
15秒前
科研通AI2S应助Hoooo...采纳,获得10
16秒前
小鱼儿完成签到,获得积分10
16秒前
17秒前
17秒前
万能图书馆应助海底采纳,获得10
17秒前
18秒前
18秒前
fkwwdamocles完成签到,获得积分10
19秒前
FashionBoy应助momo采纳,获得10
19秒前
whr发布了新的文献求助10
20秒前
21秒前
22秒前
23秒前
juno发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150257
求助须知:如何正确求助?哪些是违规求助? 2801405
关于积分的说明 7844390
捐赠科研通 2458892
什么是DOI,文献DOI怎么找? 1308773
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721