VRLA battery fault prediction for data center based on random forest model and feature enhancement method

铅酸蓄电池 电池(电) 可靠性工程 铅酸蓄电池 电压 试验数据 断层(地质) 计算机科学 数据中心 功率(物理) 工程类 数据挖掘 电气工程 物理 量子力学 地震学 程序设计语言 地质学 操作系统
作者
Xinhan Li,Aiping Pang,Wen Yang,Qianchuan Zhao
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108666-108666 被引量:3
标识
DOI:10.1016/j.est.2023.108666
摘要

The Valve-Regulated Lead-Acid (VRLA) battery is an important part of data center power supply system. Battery failure will threaten the safe operation of the data center. How to predict the impending battery failure in advance is an urgent problem to be solved to ensure the operation safety of the data center. However, batteries in such precise data centers rarely fail. Few faulty samples cause extreme imbalance between normal samples and faulty samples. In the data center site, the battery is usually in a floating state and the battery charge-discharge cycle times are less. As a result, the obtained battery data has a single working condition. In addition, VRLA batteries are faced with the problems of limited observation information (large amount of data but low data dimension, only voltage, resistance and temperature collected directly from sensors). In this paper, a feature enhancement method is proposed by analyzing the working characteristics of VRLA batteries in the data center. This method extends the two-dimensional characteristics (voltage, resistance) of battery to nine-dimensional characteristics to solve the problem of limited observation information of VRLA battery. The problem of extreme imbalance between normal samples and faulty samples of battery is solved based on clustering undersampling method. Based on the above two methods, a VRLA battery fault classification prediction model is proposed. The nine-month operation data of 1000 VRLA battery were randomly selected from a data center and combined with the simulated fault samples to form a test set. The test results show that the F-score value of the model is increased from 54.5 % to 97.5 % after the clustering undersampling method and the feature enhancement method proposed in this paper. Compared with the VRLA battery replacement strategy recommended in IEEE STD 1188-2005 on this test set, the method can predict the impending battery failure at least 3 days in advance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
4秒前
5秒前
Lignin发布了新的文献求助10
5秒前
6秒前
6秒前
酷炫的凤妖完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助30
8秒前
9秒前
Yepp发布了新的文献求助10
10秒前
研友_8KKmR8发布了新的文献求助10
10秒前
10秒前
12秒前
sjyplus1发布了新的文献求助10
14秒前
15秒前
一路狂奔等不了完成签到 ,获得积分10
15秒前
Lignin发布了新的文献求助10
15秒前
Akim应助能干的吐司采纳,获得10
15秒前
MrRen完成签到,获得积分10
16秒前
Wd完成签到,获得积分20
17秒前
Menand完成签到,获得积分10
18秒前
20秒前
20秒前
FashionBoy应助Lignin采纳,获得10
21秒前
优雅梨愁发布了新的文献求助10
21秒前
星辰大海应助Lignin采纳,获得10
21秒前
大个应助Lignin采纳,获得10
21秒前
完美世界应助Lignin采纳,获得10
21秒前
隐形曼青应助Lignin采纳,获得10
21秒前
酷波er应助sjyplus1采纳,获得10
21秒前
赘婿应助Lignin采纳,获得10
21秒前
壮观听白完成签到,获得积分10
22秒前
22秒前
22秒前
丰富听白应助xzy998采纳,获得60
23秒前
23秒前
科目三应助Wd采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736834
求助须知:如何正确求助?哪些是违规求助? 5368742
关于积分的说明 15334181
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622909
邀请新用户注册赠送积分活动 1571817
关于科研通互助平台的介绍 1528640