VRLA battery fault prediction for data center based on random forest model and feature enhancement method

铅酸蓄电池 电池(电) 可靠性工程 铅酸蓄电池 电压 试验数据 断层(地质) 计算机科学 数据中心 功率(物理) 工程类 数据挖掘 电气工程 物理 量子力学 地震学 程序设计语言 地质学 操作系统
作者
Xinhan Li,Aiping Pang,Wen Yang,Qianchuan Zhao
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:72: 108666-108666 被引量:3
标识
DOI:10.1016/j.est.2023.108666
摘要

The Valve-Regulated Lead-Acid (VRLA) battery is an important part of data center power supply system. Battery failure will threaten the safe operation of the data center. How to predict the impending battery failure in advance is an urgent problem to be solved to ensure the operation safety of the data center. However, batteries in such precise data centers rarely fail. Few faulty samples cause extreme imbalance between normal samples and faulty samples. In the data center site, the battery is usually in a floating state and the battery charge-discharge cycle times are less. As a result, the obtained battery data has a single working condition. In addition, VRLA batteries are faced with the problems of limited observation information (large amount of data but low data dimension, only voltage, resistance and temperature collected directly from sensors). In this paper, a feature enhancement method is proposed by analyzing the working characteristics of VRLA batteries in the data center. This method extends the two-dimensional characteristics (voltage, resistance) of battery to nine-dimensional characteristics to solve the problem of limited observation information of VRLA battery. The problem of extreme imbalance between normal samples and faulty samples of battery is solved based on clustering undersampling method. Based on the above two methods, a VRLA battery fault classification prediction model is proposed. The nine-month operation data of 1000 VRLA battery were randomly selected from a data center and combined with the simulated fault samples to form a test set. The test results show that the F-score value of the model is increased from 54.5 % to 97.5 % after the clustering undersampling method and the feature enhancement method proposed in this paper. Compared with the VRLA battery replacement strategy recommended in IEEE STD 1188-2005 on this test set, the method can predict the impending battery failure at least 3 days in advance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kuhn_W完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
3秒前
Orange应助宿雨采纳,获得10
3秒前
3秒前
科研通AI6应助雪糕采纳,获得10
3秒前
浮游应助king采纳,获得10
3秒前
甜甜梦寒发布了新的文献求助10
4秒前
waoller1发布了新的文献求助10
5秒前
英俊的铭应助wer采纳,获得30
5秒前
李恒豪完成签到,获得积分10
6秒前
WY发布了新的文献求助10
6秒前
6秒前
6秒前
d叨叨鱼发布了新的文献求助10
6秒前
7秒前
培a发布了新的文献求助10
7秒前
7秒前
8秒前
熙泽发布了新的文献求助10
8秒前
9秒前
9秒前
CipherSage应助ytyl采纳,获得10
10秒前
疯狂的醉波完成签到 ,获得积分10
10秒前
10秒前
科研式完成签到,获得积分10
11秒前
12秒前
14秒前
传统的唯雪完成签到,获得积分10
14秒前
JamesPei应助BruceQ采纳,获得10
14秒前
刘刘发布了新的文献求助10
15秒前
成就盼芙完成签到,获得积分10
16秒前
Ava应助培a采纳,获得10
17秒前
小燕要加油完成签到,获得积分10
17秒前
17秒前
yifangye发布了新的文献求助10
17秒前
19秒前
lee完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908059
求助须知:如何正确求助?哪些是违规求助? 4184839
关于积分的说明 12995484
捐赠科研通 3951356
什么是DOI,文献DOI怎么找? 2166932
邀请新用户注册赠送积分活动 1185461
关于科研通互助平台的介绍 1091987