VRLA battery fault prediction for data center based on random forest model and feature enhancement method

铅酸蓄电池 电池(电) 可靠性工程 铅酸蓄电池 电压 试验数据 断层(地质) 计算机科学 数据中心 功率(物理) 工程类 数据挖掘 电气工程 物理 量子力学 地震学 程序设计语言 地质学 操作系统
作者
Xinhan Li,Aiping Pang,Wen Yang,Qianchuan Zhao
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108666-108666 被引量:3
标识
DOI:10.1016/j.est.2023.108666
摘要

The Valve-Regulated Lead-Acid (VRLA) battery is an important part of data center power supply system. Battery failure will threaten the safe operation of the data center. How to predict the impending battery failure in advance is an urgent problem to be solved to ensure the operation safety of the data center. However, batteries in such precise data centers rarely fail. Few faulty samples cause extreme imbalance between normal samples and faulty samples. In the data center site, the battery is usually in a floating state and the battery charge-discharge cycle times are less. As a result, the obtained battery data has a single working condition. In addition, VRLA batteries are faced with the problems of limited observation information (large amount of data but low data dimension, only voltage, resistance and temperature collected directly from sensors). In this paper, a feature enhancement method is proposed by analyzing the working characteristics of VRLA batteries in the data center. This method extends the two-dimensional characteristics (voltage, resistance) of battery to nine-dimensional characteristics to solve the problem of limited observation information of VRLA battery. The problem of extreme imbalance between normal samples and faulty samples of battery is solved based on clustering undersampling method. Based on the above two methods, a VRLA battery fault classification prediction model is proposed. The nine-month operation data of 1000 VRLA battery were randomly selected from a data center and combined with the simulated fault samples to form a test set. The test results show that the F-score value of the model is increased from 54.5 % to 97.5 % after the clustering undersampling method and the feature enhancement method proposed in this paper. Compared with the VRLA battery replacement strategy recommended in IEEE STD 1188-2005 on this test set, the method can predict the impending battery failure at least 3 days in advance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
丘比特应助周周采纳,获得10
1秒前
默问应助KTM天下第一采纳,获得10
1秒前
1秒前
平凡之路发布了新的文献求助10
1秒前
1101592875应助哈哈哈采纳,获得10
2秒前
天天快乐应助哈哈哈采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
共享精神应助butterflycat采纳,获得10
2秒前
wang完成签到,获得积分10
2秒前
SS_完成签到,获得积分20
2秒前
李卓辰发布了新的文献求助10
2秒前
2秒前
冰姗完成签到,获得积分10
2秒前
王艳完成签到,获得积分10
3秒前
3秒前
spring发布了新的文献求助10
3秒前
3秒前
ymj完成签到,获得积分10
4秒前
4秒前
4秒前
黄云发布了新的文献求助10
4秒前
4秒前
LBB发布了新的文献求助10
5秒前
5秒前
younghippo发布了新的文献求助10
5秒前
刘小文完成签到 ,获得积分10
6秒前
6秒前
哈比人linling完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
不如无言完成签到,获得积分10
7秒前
林风发布了新的文献求助30
8秒前
冉冉完成签到,获得积分10
8秒前
在水一方应助沉静的歌曲采纳,获得30
8秒前
十三发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502