已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

VRLA battery fault prediction for data center based on random forest model and feature enhancement method

铅酸蓄电池 电池(电) 可靠性工程 铅酸蓄电池 电压 试验数据 断层(地质) 计算机科学 数据中心 功率(物理) 工程类 数据挖掘 电气工程 物理 量子力学 地震学 程序设计语言 地质学 操作系统
作者
Xinhan Li,Aiping Pang,Wen Yang,Qianchuan Zhao
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108666-108666 被引量:3
标识
DOI:10.1016/j.est.2023.108666
摘要

The Valve-Regulated Lead-Acid (VRLA) battery is an important part of data center power supply system. Battery failure will threaten the safe operation of the data center. How to predict the impending battery failure in advance is an urgent problem to be solved to ensure the operation safety of the data center. However, batteries in such precise data centers rarely fail. Few faulty samples cause extreme imbalance between normal samples and faulty samples. In the data center site, the battery is usually in a floating state and the battery charge-discharge cycle times are less. As a result, the obtained battery data has a single working condition. In addition, VRLA batteries are faced with the problems of limited observation information (large amount of data but low data dimension, only voltage, resistance and temperature collected directly from sensors). In this paper, a feature enhancement method is proposed by analyzing the working characteristics of VRLA batteries in the data center. This method extends the two-dimensional characteristics (voltage, resistance) of battery to nine-dimensional characteristics to solve the problem of limited observation information of VRLA battery. The problem of extreme imbalance between normal samples and faulty samples of battery is solved based on clustering undersampling method. Based on the above two methods, a VRLA battery fault classification prediction model is proposed. The nine-month operation data of 1000 VRLA battery were randomly selected from a data center and combined with the simulated fault samples to form a test set. The test results show that the F-score value of the model is increased from 54.5 % to 97.5 % after the clustering undersampling method and the feature enhancement method proposed in this paper. Compared with the VRLA battery replacement strategy recommended in IEEE STD 1188-2005 on this test set, the method can predict the impending battery failure at least 3 days in advance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
MoSen发布了新的文献求助10
2秒前
徐cc完成签到 ,获得积分10
2秒前
sy发布了新的文献求助10
2秒前
bkagyin应助十六夜彦采纳,获得10
5秒前
bsz发布了新的文献求助10
6秒前
冷静的冰露完成签到,获得积分10
8秒前
8秒前
我是老大应助奋斗雪巧采纳,获得10
8秒前
9秒前
10秒前
11秒前
完美冰枫发布了新的文献求助10
12秒前
Akim应助耍酷的谷秋采纳,获得10
12秒前
极速小鱼发布了新的文献求助10
14秒前
昏睡的傻姑完成签到,获得积分10
15秒前
15秒前
略略略发布了新的文献求助10
18秒前
18秒前
orixero应助bsz采纳,获得10
19秒前
归尘发布了新的文献求助10
19秒前
风清扬发布了新的文献求助10
20秒前
从此刻开始完成签到,获得积分10
20秒前
21秒前
璎丸子关注了科研通微信公众号
21秒前
22秒前
Hello应助Vivian采纳,获得10
23秒前
LL完成签到,获得积分10
23秒前
24秒前
nojmli发布了新的文献求助10
25秒前
共享精神应助极速小鱼采纳,获得10
25秒前
25秒前
桐桐应助sy采纳,获得10
25秒前
孤独芷烟完成签到 ,获得积分10
26秒前
26秒前
传奇3应助务实的冬寒采纳,获得10
28秒前
黄琳完成签到,获得积分10
28秒前
28秒前
所所应助靴子采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469659
求助须知:如何正确求助?哪些是违规求助? 4572675
关于积分的说明 14336729
捐赠科研通 4499533
什么是DOI,文献DOI怎么找? 2465123
邀请新用户注册赠送积分活动 1453678
关于科研通互助平台的介绍 1428175