亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electronic structure and optical absorption property of BaTiO3/BiCoO3

复合数 带隙 材料科学 吸收(声学) 电子能带结构 光电效应 电子结构 光电子学 凝聚态物理 化学 复合材料 计算化学 物理
作者
Lin Wei,Lei Pang,Shaoyuan Pang,Jianan Sun,Piaoping Yang,Jianxin Guo
出处
期刊:Surface and Interface Analysis [Wiley]
卷期号:55 (12): 909-915
标识
DOI:10.1002/sia.7258
摘要

In this paper, we calculated the different forms of BaTiO 3 /BiCoO 3 composite structure, predicting their visible light absorption performance based on the electronic structure using the first principles calculations. Firstly, six possible compounds that come from BaTiO 3 and BiCoO 3 were constructed. By calculating the different antiferromagnetic (AFM) structures of strip, columnar, and layered composite structures, it is found that the ground state of the composite structure changes to G‐type AFM structure from C‐type AFM structure of pure BiCoO 3 under the influence of BaTiO 3 . Energy band calculations show that band gaps of three composite structures are smaller than those of pure BaTiO 3 and pure BiCoO 3 . Furthermore, density of states analysis shows that the conduction band minimum (CBM) and valence band maximum (VBM) of three composite structures are mainly from the contribution of Co 3 d and O 2 p . For the characteristic that CBM and VBM of materials come from different atoms, it would reduce the recombination opportunities of electrons and holes and is conducive to the increase of photoelectric conversion efficiency under visible light irradiation. The calculation of optical properties shows that optical absorption coefficients of three composite structures are much larger than that of BaTiO 3 , especially the layered composite structure. There is a high absorption peak near 500 nm of the solar spectral irradiation maximum, which is significantly important to improve the optical energy conversion efficiency of the composite materials. The work provides an effective way for the application of wide band gap ferroelectric materials in ferroelectric photovoltaic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
李娇完成签到 ,获得积分10
6秒前
SciGPT应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
17秒前
德拉科发布了新的文献求助30
24秒前
29秒前
37秒前
44秒前
兴尽晚回舟完成签到 ,获得积分10
44秒前
46秒前
灵巧的代芙完成签到 ,获得积分10
48秒前
Raunio完成签到,获得积分10
51秒前
52秒前
德拉科完成签到,获得积分10
53秒前
1分钟前
1分钟前
mellow完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Yy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
无花果应助zzb采纳,获得10
1分钟前
2分钟前
Panther完成签到,获得积分10
2分钟前
2分钟前
YVO4完成签到 ,获得积分10
2分钟前
zzb发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
hhq完成签到 ,获得积分10
2分钟前
Criminology34应助XizheWang采纳,获得30
2分钟前
Yy完成签到,获得积分20
2分钟前
ybk666完成签到,获得积分10
2分钟前
A水暖五金批发张哥完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913668
捐赠科研通 4748953
什么是DOI,文献DOI怎么找? 2549283
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474091