How Landscape Patterns Affect River Water Quality Spatially and Temporally: A Multiscale Geographically Weighted Regression Approach

分水岭 水质 环境科学 水文学(农业) 大洪水 空间生态学 土地利用 空间变异性 地理 自然地理学 生态学 统计 数学 地质学 机器学习 生物 计算机科学 考古 岩土工程
作者
Xia Li,Jin Zhang,Wenbo Yu,Lu Liu,Wei Wang,Z. Cui,Wei Wang,Ruikang K. Wang,Yuan Li
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
被引量:4
标识
DOI:10.3808/jei.202300503
摘要

The water quality of a river can be considered a function of its surrounding landscape. Understanding the relationship between landscape patterns and river water quality is essential for optimizing landscape patterns to reduce watershed pollution and has not yet been solved. A multiscale geographically weighted regression (MGWR) model was used to explore the associations between the landscape patterns and water quality. Our results showed that landscape metrics have varied relationships with the water quality across spatial scales in different seasons. The strongest independent influencing variable for NO3–-N, NH4+-N, and TN was tea gardens, residential land, and varied seasonally, respectively. The impacts of the landscape metrics on the TP were relatively weak throughout the year at the watershed scale. The influence of landscape metrics on NO3–-N was more significant during the flood season, whereas that on NH4+-N was more notable during the non-flood season. Seasonal changes in the influencing landscape metrics of TN were not regular. Although landscape composition more significantly influenced water quality than configuration, the Shannon’s diversity index and patch density were important configuration indices that significantly impacted water quality. Therefore, with limited land availability, it is essential to optimize the landscape spatial configuration without changing the composition of the watershed to reduce the risk of river pollution. This study further indicated that the MGWR model can well quantify the effects of landscape pattern on water quality at the watershed scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早安甜甜菌完成签到,获得积分10
1秒前
1秒前
无花果应助A哇咔咔咔采纳,获得10
2秒前
3秒前
3秒前
英俊的铭应助Joyj99采纳,获得10
3秒前
飞云之下关注了科研通微信公众号
4秒前
小二郎应助小东西725采纳,获得10
4秒前
Ava应助阳光的羊采纳,获得10
5秒前
粉色的小天鹅完成签到,获得积分10
5秒前
6秒前
shiruyan发布了新的文献求助50
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
脑洞疼应助tian采纳,获得10
8秒前
hy完成签到,获得积分10
8秒前
hhhh驳回了zxcsdfa应助
8秒前
大模型应助粗暴的季节采纳,获得10
9秒前
张张发布了新的文献求助10
9秒前
9秒前
FashionBoy应助灰尘精灵c采纳,获得10
9秒前
丘比特应助听听看采纳,获得10
9秒前
peanut发布了新的文献求助10
9秒前
科研小白发布了新的文献求助10
10秒前
司马天寿发布了新的文献求助10
10秒前
10秒前
思源应助研究生采纳,获得10
11秒前
A哇咔咔咔发布了新的文献求助10
11秒前
Reef发布了新的文献求助10
12秒前
12秒前
令狐远航发布了新的文献求助10
12秒前
14秒前
lucky发布了新的文献求助10
14秒前
Ava应助蟹蟹采纳,获得10
14秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462073
求助须知:如何正确求助?哪些是违规求助? 3055716
关于积分的说明 9048980
捐赠科研通 2745328
什么是DOI,文献DOI怎么找? 1506180
科研通“疑难数据库(出版商)”最低求助积分说明 696000
邀请新用户注册赠送积分活动 695560