Temperature-Dependent Bond–Slip Behavior of CFRP Bars Embedded in Ultrahigh-Performance Fiber-Reinforced Concrete

材料科学 复合材料 碳纤维增强聚合物 粘结强度 打滑(空气动力学) 极限抗拉强度 债券 抗弯强度 钢筋混凝土 耐久性 结构工程 胶粘剂 图层(电子) 物理 财务 工程类 经济 热力学
作者
Lu Ke,Lin Li,Feng Zheng,Zheng Chen,G.M. Chen,Youlin Li
出处
期刊:Journal of Composites for Construction [American Society of Civil Engineers]
卷期号:28 (1) 被引量:1
标识
DOI:10.1061/jccof2.cceng-4306
摘要

The flexural and durability performance of reinforced ultrahigh-performance fiber-reinforced concrete (UHPFRC) beam structures is expected to improve if the steel bars are replaced with carbon fiber–reinforced polymer (CFRP) bars with high tensile strength and corrosion resistance. Nevertheless, the interfacial bond characteristics between CFRP bars and UHPFRC may deteriorate when subjected to elevated ambient temperatures during service. To investigate the bond–slip behavior of CFRP bars embedded in UHPFRC at elevated ambient temperature, a series of direct pullout tests were conducted under elevated ambient temperatures ranging from 20°C to 80°C. The testing used CFRP bars with two diameters of 10 and 12 mm. Based on the test results, two temperature-dependent bond–slip models (T-MBPE and T-MCMR-SC models) and a temperature-dependent bond strength model were developed. The results indicated that the bond strength decreases dramatically as the ambient temperature increases. The bond strengths of the specimens with 12-mm-diameter CFRP bars are higher than those with 10-mm-diameter CFRP bars, which is mainly due to the greater rib height of the 12-mm-diameter CFRP bars. Compared with the proposed T-MBPE model, the constructed bond–slip relationships of the proposed T-MCMR-SC model were more consistent with the experimental results. The proposed temperature-dependent bond strength model performed well in characterizing the bond degradation under elevated ambient temperatures, with a prediction error of less than 10% compared to the experimental results. The research outcomes can provide an experimental and constitutive basis for using CFRP bars in UHPFRC structures at elevated temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孔雨珍完成签到,获得积分10
1秒前
娇气的春天完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
大模型应助奔奔采纳,获得10
3秒前
4秒前
4秒前
Owen应助西哈哈采纳,获得10
4秒前
Jessie完成签到 ,获得积分10
4秒前
烟花应助孔雨珍采纳,获得10
5秒前
王小志发布了新的文献求助10
5秒前
科研通AI5应助SCI采纳,获得10
5秒前
net完成签到 ,获得积分10
5秒前
Sally完成签到,获得积分10
6秒前
飘逸蘑菇完成签到 ,获得积分10
6秒前
7秒前
小二郎应助tao采纳,获得10
7秒前
陈丫发布了新的文献求助10
7秒前
7秒前
7秒前
小二郎应助凉风有信9527采纳,获得10
8秒前
LEMON发布了新的文献求助20
9秒前
炜大的我完成签到,获得积分10
9秒前
haimianbaobao发布了新的文献求助10
9秒前
传奇3应助研友_nPoXoL采纳,获得10
9秒前
lpp完成签到,获得积分10
9秒前
9秒前
ww发布了新的文献求助10
9秒前
22发布了新的文献求助10
10秒前
zhui发布了新的文献求助10
10秒前
11秒前
Jenny应助哈哈哈哈采纳,获得10
12秒前
笨笨芯应助Miracle采纳,获得10
12秒前
研友_LJGpan完成签到,获得积分10
12秒前
xiaozhenA完成签到,获得积分10
12秒前
junzilan发布了新的文献求助10
12秒前
云澈发布了新的文献求助10
12秒前
Hello paper发布了新的文献求助20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794