亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MV-ReID: 3D Multi-view Transformation Network for Occluded Person Re-Identification

计算机科学 人工智能 RGB颜色模型 渲染(计算机图形) 计算机视觉 杠杆(统计) 网格 转化(遗传学) 水准点(测量) 鉴定(生物学) 模式识别(心理学) 数学 几何学 基因 生物 化学 植物 生物化学 地理 大地测量学
作者
Zaiyang Yu,Prayag Tiwari,Luyang Hou,Lusi Li,Weijun Li,Limin Jiang,Xin Ning
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111200-111200 被引量:2
标识
DOI:10.1016/j.knosys.2023.111200
摘要

Re-identification (ReID) of occluded persons is a challenging task due to the loss of information in scenes with occlusions. Most existing methods for occluded ReID use 2D-based network structures to directly extract representations from 2D RGB (red, green, and blue) images, which can result in reduced performance in occluded scenes. However, since a person is a 3D non-grid object, learning semantic representations in a 2D space can limit the ability to accurately profile an occluded person. Therefore, it is crucial to explore alternative approaches that can effectively handle occlusions and leverage the full 3D nature of a person. To tackle these challenges, in this study, we employ a 3D view-based approach that fully utilizes the geometric information of 3D objects while leveraging advancements in 2D-based networks for feature extraction. Our study is the first to introduce a 3D view-based method in the areas of holistic and occluded ReID. To implement this approach, we propose a random rendering strategy that converts 2D RGB images into 3D multi-view images. We then use a 3D Multi-View Transformation Network for ReID (MV-ReID) to group and aggregate these images into a unified feature space. Compared to 2D RGB images, multi-view images can reconstruct occluded portions of a person in 3D space, enabling a more comprehensive understanding of occluded individuals. The experiments on benchmark datasets demonstrate that the proposed method achieves state-of-the-art results on occluded ReID tasks and exhibits competitive performance on holistic ReID tasks. These results also suggest that our approach has the potential to solve occlusion problems and contribute to the field of ReID. The source code and dataset are available at https://github.com/yuzaiyang123/MV-Reid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷你的靖雁完成签到,获得积分10
22秒前
Orange应助威武谷南采纳,获得10
25秒前
taotao发布了新的文献求助10
29秒前
37秒前
42秒前
威武谷南发布了新的文献求助10
44秒前
50秒前
SoftwarePrince完成签到,获得积分10
55秒前
郗妫完成签到,获得积分10
1分钟前
jyy完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
spark810完成签到,获得积分0
1分钟前
factor发布了新的文献求助10
1分钟前
彭于晏应助欢呼的寻双采纳,获得10
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
完美世界应助一杯美式采纳,获得10
2分钟前
2分钟前
一杯美式发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
英俊的铭应助iris采纳,获得10
4分钟前
领导范儿应助大爷醒醒啊采纳,获得10
4分钟前
4分钟前
iris发布了新的文献求助10
4分钟前
buerger完成签到,获得积分20
4分钟前
kardeem完成签到,获得积分10
4分钟前
4分钟前
搜集达人应助科研通管家采纳,获得10
5分钟前
秋刀鱼不过期完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
仁爱的雁芙完成签到,获得积分10
5分钟前
Corn_Dog完成签到 ,获得积分10
6分钟前
6分钟前
81299发布了新的文献求助10
6分钟前
81299完成签到,获得积分20
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784128
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299643
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989