亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MV-ReID: 3D Multi-view Transformation Network for Occluded Person Re-Identification

计算机科学 人工智能 RGB颜色模型 渲染(计算机图形) 计算机视觉 杠杆(统计) 网格 转化(遗传学) 水准点(测量) 鉴定(生物学) 模式识别(心理学) 数学 生物化学 化学 植物 几何学 大地测量学 生物 基因 地理
作者
Zaiyang Yu,Prayag Tiwari,Luyang Hou,Lusi Li,Weijun Li,Limin Jiang,Xin Ning
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111200-111200 被引量:25
标识
DOI:10.1016/j.knosys.2023.111200
摘要

Re-identification (ReID) of occluded persons is a challenging task due to the loss of information in scenes with occlusions. Most existing methods for occluded ReID use 2D-based network structures to directly extract representations from 2D RGB (red, green, and blue) images, which can result in reduced performance in occluded scenes. However, since a person is a 3D non-grid object, learning semantic representations in a 2D space can limit the ability to accurately profile an occluded person. Therefore, it is crucial to explore alternative approaches that can effectively handle occlusions and leverage the full 3D nature of a person. To tackle these challenges, in this study, we employ a 3D view-based approach that fully utilizes the geometric information of 3D objects while leveraging advancements in 2D-based networks for feature extraction. Our study is the first to introduce a 3D view-based method in the areas of holistic and occluded ReID. To implement this approach, we propose a random rendering strategy that converts 2D RGB images into 3D multi-view images. We then use a 3D Multi-View Transformation Network for ReID (MV-ReID) to group and aggregate these images into a unified feature space. Compared to 2D RGB images, multi-view images can reconstruct occluded portions of a person in 3D space, enabling a more comprehensive understanding of occluded individuals. The experiments on benchmark datasets demonstrate that the proposed method achieves state-of-the-art results on occluded ReID tasks and exhibits competitive performance on holistic ReID tasks. These results also suggest that our approach has the potential to solve occlusion problems and contribute to the field of ReID. The source code and dataset are available at https://github.com/yuzaiyang123/MV-Reid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
曲聋五完成签到 ,获得积分0
6秒前
12秒前
17秒前
39秒前
bc发布了新的文献求助10
44秒前
45秒前
爱u发布了新的文献求助10
50秒前
能干梦安完成签到,获得积分10
53秒前
54秒前
华仔应助爱u采纳,获得10
57秒前
求助人员应助能干梦安采纳,获得10
59秒前
racchellll完成签到 ,获得积分10
59秒前
一只抱枕发布了新的文献求助10
59秒前
量子星尘发布了新的文献求助10
1分钟前
求助人员应助能干梦安采纳,获得10
1分钟前
Rainy完成签到 ,获得积分10
1分钟前
一只抱枕完成签到,获得积分10
1分钟前
上官若男应助调皮的绿真采纳,获得30
1分钟前
xaopng完成签到,获得积分10
1分钟前
大模型应助fay采纳,获得10
1分钟前
叮咚完成签到,获得积分10
1分钟前
魁梧的笑珊完成签到,获得积分10
1分钟前
小二郎应助魁梧的笑珊采纳,获得10
1分钟前
木棉完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得20
2分钟前
sunny完成签到,获得积分10
2分钟前
2分钟前
2分钟前
胡尼亦八发布了新的文献求助10
2分钟前
叮咚关注了科研通微信公众号
2分钟前
Ava应助胡尼亦八采纳,获得10
2分钟前
2分钟前
优秀的甜菜完成签到,获得积分10
2分钟前
2分钟前
SciGPT应助调皮的绿真采纳,获得10
2分钟前
搞怪的白云完成签到 ,获得积分10
2分钟前
2分钟前
souther完成签到,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664241
求助须知:如何正确求助?哪些是违规求助? 4859506
关于积分的说明 15107358
捐赠科研通 4822753
什么是DOI,文献DOI怎么找? 2581699
邀请新用户注册赠送积分活动 1535922
关于科研通互助平台的介绍 1494120