MV-ReID: 3D Multi-view Transformation Network for Occluded Person Re-Identification

计算机科学 人工智能 RGB颜色模型 渲染(计算机图形) 计算机视觉 杠杆(统计) 网格 转化(遗传学) 水准点(测量) 鉴定(生物学) 模式识别(心理学) 数学 几何学 基因 生物 化学 植物 生物化学 地理 大地测量学
作者
Zaiyang Yu,Prayag Tiwari,Luyang Hou,Lusi Li,Weijun Li,Limin Jiang,Xin Ning
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111200-111200 被引量:2
标识
DOI:10.1016/j.knosys.2023.111200
摘要

Re-identification (ReID) of occluded persons is a challenging task due to the loss of information in scenes with occlusions. Most existing methods for occluded ReID use 2D-based network structures to directly extract representations from 2D RGB (red, green, and blue) images, which can result in reduced performance in occluded scenes. However, since a person is a 3D non-grid object, learning semantic representations in a 2D space can limit the ability to accurately profile an occluded person. Therefore, it is crucial to explore alternative approaches that can effectively handle occlusions and leverage the full 3D nature of a person. To tackle these challenges, in this study, we employ a 3D view-based approach that fully utilizes the geometric information of 3D objects while leveraging advancements in 2D-based networks for feature extraction. Our study is the first to introduce a 3D view-based method in the areas of holistic and occluded ReID. To implement this approach, we propose a random rendering strategy that converts 2D RGB images into 3D multi-view images. We then use a 3D Multi-View Transformation Network for ReID (MV-ReID) to group and aggregate these images into a unified feature space. Compared to 2D RGB images, multi-view images can reconstruct occluded portions of a person in 3D space, enabling a more comprehensive understanding of occluded individuals. The experiments on benchmark datasets demonstrate that the proposed method achieves state-of-the-art results on occluded ReID tasks and exhibits competitive performance on holistic ReID tasks. These results also suggest that our approach has the potential to solve occlusion problems and contribute to the field of ReID. The source code and dataset are available at https://github.com/yuzaiyang123/MV-Reid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李爱国应助晨曦采纳,获得10
2秒前
0128lun发布了新的文献求助10
2秒前
phd发布了新的文献求助10
3秒前
君无名完成签到 ,获得积分10
3秒前
经年发布了新的文献求助10
3秒前
QXR完成签到,获得积分10
4秒前
豆dou完成签到,获得积分10
4秒前
Dddd发布了新的文献求助10
4秒前
HCl完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
Hollen完成签到 ,获得积分10
8秒前
慕青应助学术蠕虫采纳,获得10
9秒前
9秒前
叶子发布了新的文献求助10
10秒前
orangel完成签到,获得积分10
11秒前
半壶月色半边天完成签到 ,获得积分10
12秒前
tmpstlml发布了新的文献求助10
12秒前
13秒前
13秒前
不安饼干完成签到 ,获得积分10
15秒前
活泼的飞鸟完成签到,获得积分10
15秒前
16秒前
xuyun发布了新的文献求助10
16秒前
16秒前
zzcres完成签到,获得积分10
18秒前
eeeee完成签到 ,获得积分10
18秒前
乐观德地完成签到,获得积分10
19秒前
大个应助yf_zhu采纳,获得10
19秒前
llk发布了新的文献求助10
20秒前
一只大肥猫完成签到,获得积分10
20秒前
20秒前
22秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808