Optimization of rolling bearing dynamic model based on improved golden jackal optimization algorithm and sensitive feature fusion

断层(地质) 灵敏度(控制系统) 遗传算法 特征(语言学) 算法 方位(导航) 信号(编程语言) 主成分分析 计算机科学 人工智能 模式识别(心理学) 工程类 机器学习 电子工程 语言学 哲学 地震学 程序设计语言 地质学
作者
Cailu Pan,Zhiwu Shang,Fei Liu,Wanxiang Li,Maosheng Gao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:204: 110845-110845 被引量:16
标识
DOI:10.1016/j.ymssp.2023.110845
摘要

Some simplified modeling parameters in the traditional rolling bearing dynamics model led to poor consistency between the simulated and measured vibration signals. In addition, the simulated signal has low accuracy, which in turn reduces the accuracy of bearing fault diagnosis based on the simulated signal. Thus, to resolve the above-mentioned issues, this study presents a method for optimizing rolling bearing dynamics models based on an improved golden jackal optimization (IGJO) algorithm and sensitive feature fusion. Firstly, this study proposes an IGJO algorithm using a dimension-by-dimension reverse learning strategy and adaptive weights to address the interplay of dimensions in the multidimensional optimization process and the imbalance between the global and local search abilities of the GJO. Secondly, a fusion strategy for bearing fault-sensitive features is proposed based on the binary's improved golden jackal optimization (B-IGJO) algorithm and principal component analysis (PCA). In this strategy, the Sigmoid function discretization method is used to obtain the B-IGJO algorithm, which is then applied to the measured signal to select the bearing fault sensitivity features. These features are analyzed using PCA to obtain the fused sensitivity feature expression. Finally, the fusion-feature expressions are used to calculate the fusion-sensitive features of the measured and simulated vibration signals, and then the residuals of the two are used as the objective function for model optimization. The parameters of the rolling bearing dynamics model are updated using the IGJO. The proposed method is experimentally verified through a single pitting fault dynamics model of the outer ring of the rolling bearing. In conclusion, our results confirm the effectiveness and feasibility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神奇宝贝完成签到,获得积分10
刚刚
小福贵发布了新的文献求助10
刚刚
蛋宝发布了新的文献求助10
刚刚
李英俊发布了新的文献求助10
刚刚
小熊锯木头完成签到,获得积分20
刚刚
卡皮巴拉完成签到,获得积分10
1秒前
Orange应助执着蓝采纳,获得10
1秒前
chu发布了新的文献求助10
1秒前
城市公园完成签到,获得积分10
1秒前
2秒前
菜鸟完成签到,获得积分10
3秒前
林北bei完成签到,获得积分10
3秒前
123应助amupf采纳,获得10
3秒前
3秒前
Miracle完成签到,获得积分10
4秒前
Yolo发布了新的文献求助10
4秒前
青柠完成签到 ,获得积分10
4秒前
yu完成签到,获得积分10
5秒前
5秒前
完美念文发布了新的文献求助10
5秒前
6秒前
珊明治完成签到,获得积分10
6秒前
城市公园发布了新的文献求助10
6秒前
断绝的发布了新的文献求助10
7秒前
7秒前
锋zai完成签到,获得积分10
7秒前
wwb完成签到,获得积分10
7秒前
adi发布了新的文献求助10
8秒前
庄冬丽发布了新的文献求助10
8秒前
白露完成签到 ,获得积分10
8秒前
JamesPei应助哈哈哈采纳,获得10
8秒前
chu完成签到,获得积分10
8秒前
wanci应助李清竹采纳,获得10
8秒前
李英俊完成签到,获得积分10
9秒前
流雲发布了新的文献求助10
10秒前
阔达语儿完成签到,获得积分10
10秒前
10秒前
英俊的铭应助hhh采纳,获得10
11秒前
11秒前
小茗同学完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624193
求助须知:如何正确求助?哪些是违规求助? 4710059
关于积分的说明 14949218
捐赠科研通 4778004
什么是DOI,文献DOI怎么找? 2553171
邀请新用户注册赠送积分活动 1515043
关于科研通互助平台的介绍 1475458