Optimization of rolling bearing dynamic model based on improved golden jackal optimization algorithm and sensitive feature fusion

断层(地质) 灵敏度(控制系统) 遗传算法 特征(语言学) 算法 方位(导航) 信号(编程语言) 主成分分析 计算机科学 人工智能 模式识别(心理学) 工程类 机器学习 电子工程 语言学 哲学 地震学 程序设计语言 地质学
作者
Cailu Pan,Zhiwu Shang,Fei Liu,Wanxiang Li,Maosheng Gao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:204: 110845-110845 被引量:16
标识
DOI:10.1016/j.ymssp.2023.110845
摘要

Some simplified modeling parameters in the traditional rolling bearing dynamics model led to poor consistency between the simulated and measured vibration signals. In addition, the simulated signal has low accuracy, which in turn reduces the accuracy of bearing fault diagnosis based on the simulated signal. Thus, to resolve the above-mentioned issues, this study presents a method for optimizing rolling bearing dynamics models based on an improved golden jackal optimization (IGJO) algorithm and sensitive feature fusion. Firstly, this study proposes an IGJO algorithm using a dimension-by-dimension reverse learning strategy and adaptive weights to address the interplay of dimensions in the multidimensional optimization process and the imbalance between the global and local search abilities of the GJO. Secondly, a fusion strategy for bearing fault-sensitive features is proposed based on the binary's improved golden jackal optimization (B-IGJO) algorithm and principal component analysis (PCA). In this strategy, the Sigmoid function discretization method is used to obtain the B-IGJO algorithm, which is then applied to the measured signal to select the bearing fault sensitivity features. These features are analyzed using PCA to obtain the fused sensitivity feature expression. Finally, the fusion-feature expressions are used to calculate the fusion-sensitive features of the measured and simulated vibration signals, and then the residuals of the two are used as the objective function for model optimization. The parameters of the rolling bearing dynamics model are updated using the IGJO. The proposed method is experimentally verified through a single pitting fault dynamics model of the outer ring of the rolling bearing. In conclusion, our results confirm the effectiveness and feasibility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
流沙完成签到,获得积分10
刚刚
刚刚
水硕完成签到,获得积分10
1秒前
火星上雨珍完成签到,获得积分10
1秒前
爱尔兰海鲜面完成签到,获得积分10
2秒前
3秒前
乔一完成签到 ,获得积分10
3秒前
4秒前
xiazhq完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
Yasong完成签到 ,获得积分10
6秒前
6秒前
7秒前
桐桐应助小熊噗噗采纳,获得10
7秒前
8秒前
8秒前
一二三四完成签到,获得积分10
10秒前
xyn完成签到,获得积分20
10秒前
ziwei发布了新的文献求助100
10秒前
12秒前
12秒前
小天才儿童手表完成签到,获得积分10
12秒前
Zzzjjj123发布了新的文献求助10
12秒前
SciGPT应助笨笨的初露采纳,获得10
12秒前
Luckydan完成签到,获得积分10
12秒前
12秒前
魔幻哈密瓜完成签到,获得积分20
12秒前
亦秋发布了新的文献求助10
12秒前
迷路雨竹发布了新的文献求助10
13秒前
冷酷向薇发布了新的文献求助10
13秒前
zero完成签到,获得积分10
14秒前
善学以致用应助XUXU采纳,获得10
14秒前
科研通AI6应助花开彼岸天采纳,获得10
15秒前
Wuc发布了新的文献求助10
15秒前
连爱琴发布了新的文献求助10
16秒前
KKXF完成签到,获得积分10
17秒前
1h完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061324
求助须知:如何正确求助?哪些是违规求助? 4285381
关于积分的说明 13354449
捐赠科研通 4103206
什么是DOI,文献DOI怎么找? 2246575
邀请新用户注册赠送积分活动 1252246
关于科研通互助平台的介绍 1183114