Optimization of rolling bearing dynamic model based on improved golden jackal optimization algorithm and sensitive feature fusion

断层(地质) 灵敏度(控制系统) 遗传算法 特征(语言学) 算法 方位(导航) 信号(编程语言) 主成分分析 计算机科学 人工智能 模式识别(心理学) 工程类 机器学习 电子工程 语言学 哲学 地震学 程序设计语言 地质学
作者
Cailu Pan,Zhiwu Shang,Fei Liu,Wanxiang Li,Maosheng Gao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:204: 110845-110845 被引量:6
标识
DOI:10.1016/j.ymssp.2023.110845
摘要

Some simplified modeling parameters in the traditional rolling bearing dynamics model led to poor consistency between the simulated and measured vibration signals. In addition, the simulated signal has low accuracy, which in turn reduces the accuracy of bearing fault diagnosis based on the simulated signal. Thus, to resolve the above-mentioned issues, this study presents a method for optimizing rolling bearing dynamics models based on an improved golden jackal optimization (IGJO) algorithm and sensitive feature fusion. Firstly, this study proposes an IGJO algorithm using a dimension-by-dimension reverse learning strategy and adaptive weights to address the interplay of dimensions in the multidimensional optimization process and the imbalance between the global and local search abilities of the GJO. Secondly, a fusion strategy for bearing fault-sensitive features is proposed based on the binary's improved golden jackal optimization (B-IGJO) algorithm and principal component analysis (PCA). In this strategy, the Sigmoid function discretization method is used to obtain the B-IGJO algorithm, which is then applied to the measured signal to select the bearing fault sensitivity features. These features are analyzed using PCA to obtain the fused sensitivity feature expression. Finally, the fusion-feature expressions are used to calculate the fusion-sensitive features of the measured and simulated vibration signals, and then the residuals of the two are used as the objective function for model optimization. The parameters of the rolling bearing dynamics model are updated using the IGJO. The proposed method is experimentally verified through a single pitting fault dynamics model of the outer ring of the rolling bearing. In conclusion, our results confirm the effectiveness and feasibility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助帅气的祥采纳,获得10
2秒前
大海是故乡完成签到,获得积分10
2秒前
落星完成签到,获得积分10
4秒前
闪闪妍发布了新的文献求助10
4秒前
独特的夜阑完成签到 ,获得积分10
10秒前
梦在远方完成签到 ,获得积分10
12秒前
娇气的天亦完成签到,获得积分10
14秒前
15秒前
斯文的天奇完成签到 ,获得积分10
17秒前
hcjxj完成签到,获得积分10
19秒前
科研文献搬运工完成签到 ,获得积分0
19秒前
帅气的祥发布了新的文献求助10
20秒前
北风完成签到,获得积分10
21秒前
儒雅谷云完成签到 ,获得积分10
24秒前
金色天际线完成签到,获得积分10
26秒前
26秒前
Gang完成签到,获得积分10
27秒前
PM2555完成签到 ,获得积分10
27秒前
27秒前
David发布了新的文献求助10
27秒前
火华完成签到 ,获得积分10
30秒前
义气的书雁完成签到,获得积分10
33秒前
33秒前
莫之白完成签到,获得积分10
34秒前
Ade完成签到,获得积分10
34秒前
34秒前
帅气的祥完成签到,获得积分10
35秒前
默默纲完成签到,获得积分10
35秒前
轻松思枫完成签到 ,获得积分10
35秒前
zyc1111111完成签到,获得积分10
38秒前
39秒前
40秒前
42秒前
43秒前
46秒前
我爱科研研研研完成签到,获得积分20
47秒前
123butterfly发布了新的文献求助10
48秒前
沧海云完成签到 ,获得积分10
49秒前
8R60d8应助活力的雁荷采纳,获得10
52秒前
暴躁的信封完成签到,获得积分10
54秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139684
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795749
捐赠科研通 2447017
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176