Optimization of rolling bearing dynamic model based on improved golden jackal optimization algorithm and sensitive feature fusion

断层(地质) 灵敏度(控制系统) 遗传算法 特征(语言学) 算法 方位(导航) 信号(编程语言) 主成分分析 计算机科学 人工智能 模式识别(心理学) 工程类 机器学习 电子工程 语言学 哲学 地震学 程序设计语言 地质学
作者
Cailu Pan,Zhiwu Shang,Fei Liu,Wanxiang Li,Maosheng Gao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:204: 110845-110845 被引量:6
标识
DOI:10.1016/j.ymssp.2023.110845
摘要

Some simplified modeling parameters in the traditional rolling bearing dynamics model led to poor consistency between the simulated and measured vibration signals. In addition, the simulated signal has low accuracy, which in turn reduces the accuracy of bearing fault diagnosis based on the simulated signal. Thus, to resolve the above-mentioned issues, this study presents a method for optimizing rolling bearing dynamics models based on an improved golden jackal optimization (IGJO) algorithm and sensitive feature fusion. Firstly, this study proposes an IGJO algorithm using a dimension-by-dimension reverse learning strategy and adaptive weights to address the interplay of dimensions in the multidimensional optimization process and the imbalance between the global and local search abilities of the GJO. Secondly, a fusion strategy for bearing fault-sensitive features is proposed based on the binary's improved golden jackal optimization (B-IGJO) algorithm and principal component analysis (PCA). In this strategy, the Sigmoid function discretization method is used to obtain the B-IGJO algorithm, which is then applied to the measured signal to select the bearing fault sensitivity features. These features are analyzed using PCA to obtain the fused sensitivity feature expression. Finally, the fusion-feature expressions are used to calculate the fusion-sensitive features of the measured and simulated vibration signals, and then the residuals of the two are used as the objective function for model optimization. The parameters of the rolling bearing dynamics model are updated using the IGJO. The proposed method is experimentally verified through a single pitting fault dynamics model of the outer ring of the rolling bearing. In conclusion, our results confirm the effectiveness and feasibility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐徐徐徐发布了新的文献求助10
1秒前
星晴遇见花海完成签到,获得积分10
1秒前
乐乐应助Rrr采纳,获得10
2秒前
难过鸿涛应助srt采纳,获得10
3秒前
4秒前
卡卡发布了新的文献求助10
4秒前
4秒前
6秒前
Jasper应助刘芸芸采纳,获得10
7秒前
m彬m彬完成签到 ,获得积分10
7秒前
8秒前
自信鑫鹏完成签到,获得积分10
8秒前
HYH完成签到,获得积分10
8秒前
Harish完成签到,获得积分10
9秒前
研友_851KE8发布了新的文献求助10
9秒前
9秒前
一段乐多发布了新的文献求助10
9秒前
9秒前
华仔完成签到,获得积分10
9秒前
刘百慧完成签到,获得积分10
9秒前
9秒前
Wyan发布了新的文献求助80
11秒前
成就映秋发布了新的文献求助30
11秒前
科研通AI2S应助坤坤采纳,获得10
11秒前
整齐芷文完成签到,获得积分10
12秒前
科研通AI5应助小马哥36采纳,获得10
12秒前
灵巧荆发布了新的文献求助10
13秒前
小二郎应助侦察兵采纳,获得10
13秒前
爆米花完成签到 ,获得积分10
13秒前
今后应助Evan123采纳,获得10
13秒前
凤凰之玉完成签到 ,获得积分10
14秒前
shi hui应助冬瓜炖排骨采纳,获得10
14秒前
15秒前
dyh6802发布了新的文献求助10
15秒前
冷静雅青发布了新的文献求助10
15秒前
CipherSage应助猪猪hero采纳,获得10
16秒前
领导范儿应助不凡采纳,获得30
16秒前
顾矜应助坚定的亦绿采纳,获得10
17秒前
17秒前
yu完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794