Machine Learning-Assisted Design of Thin-Film Composite Membranes for Solvent Recovery

渗透 纳滤 溶剂 化学工程 二甲基甲酰胺 单体 丙酮 材料科学 甲醇 复合数 化学 聚合物 有机化学 复合材料 工程类 渗透 生物化学
作者
Mao Wang,Gui Min Shi,Daohui Zhao,Xinyi Liu,Jianwen Jiang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (42): 15914-15924 被引量:15
标识
DOI:10.1021/acs.est.3c04773
摘要

Organic solvents are extensively utilized in industries as raw materials, reaction media, and cleaning agents. It is crucial to efficiently recover solvents for environmental protection and sustainable manufacturing. Recently, organic solvent nanofiltration (OSN) has emerged as an energy-efficient membrane technology for solvent recovery; however, current OSN membranes are largely fabricated by trial-and-error methods. In this study, for the first time, we develop a machine learning (ML) approach to design new thin-film composite membranes for solvent recovery. The monomers used in interfacial polymerization, along with membrane, solvent and solute properties, are featurized to train ML models via gradient boosting regression. The ML models demonstrate high accuracy in predicting OSN performance including solvent permeance and solute rejection. Subsequently, 167 new membranes are designed from 40 monomers and their OSN performance is predicted by the ML models for common solvents (methanol, acetone, dimethylformamide, and n-hexane). New top-performing membranes are identified with methanol permeance superior to that of existing membranes. Particularly, nitrogen-containing heterocyclic monomers are found to enhance microporosity and contribute to higher permeance. Finally, one new membrane is experimentally synthesized and tested to validate the ML predictions. Based on the chemical structures of monomers, the ML approach developed here provides a bottom-up strategy toward the rational design of new membranes for high-performance solvent recovery and many other technologically important applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山有木兮木有枝完成签到,获得积分10
2秒前
4秒前
打打应助苏木采纳,获得10
4秒前
cquank完成签到,获得积分10
5秒前
ljx关注了科研通微信公众号
6秒前
6秒前
科研小白完成签到,获得积分10
9秒前
GGBAO发布了新的文献求助10
9秒前
10秒前
12秒前
燕麦嫁牛奶完成签到 ,获得积分10
12秒前
pl656完成签到,获得积分10
15秒前
萧水白应助轻松灵薇采纳,获得10
16秒前
17秒前
shinn发布了新的文献求助50
18秒前
尽如完成签到,获得积分10
18秒前
20秒前
苏木发布了新的文献求助10
21秒前
魔幻海豚发布了新的文献求助10
22秒前
orixero应助陈小芬采纳,获得10
25秒前
25秒前
26秒前
hhh发布了新的文献求助10
27秒前
ljx发布了新的文献求助10
28秒前
29秒前
魔幻海豚完成签到,获得积分10
29秒前
小二郎应助ffffffflzx666采纳,获得10
30秒前
认真飞瑶发布了新的文献求助10
32秒前
风清扬应助wf0806采纳,获得10
33秒前
Zyhaou发布了新的文献求助10
34秒前
凉小天完成签到 ,获得积分10
35秒前
36秒前
无限凛完成签到 ,获得积分10
38秒前
DirectorO完成签到,获得积分10
40秒前
查理完成签到,获得积分10
40秒前
0610完成签到,获得积分10
40秒前
鱼儿乐园完成签到 ,获得积分10
41秒前
英俊的铭应助Zyhaou采纳,获得10
41秒前
天天发布了新的文献求助30
41秒前
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602