已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-Assisted Design of Thin-Film Composite Membranes for Solvent Recovery

渗透 纳滤 溶剂 化学工程 二甲基甲酰胺 单体 丙酮 材料科学 甲醇 复合数 化学 聚合物 有机化学 复合材料 工程类 生物化学 渗透
作者
Mao Wang,Gui Min Shi,Daohui Zhao,Xinyi Liu,Jianwen Jiang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (42): 15914-15924 被引量:17
标识
DOI:10.1021/acs.est.3c04773
摘要

Organic solvents are extensively utilized in industries as raw materials, reaction media, and cleaning agents. It is crucial to efficiently recover solvents for environmental protection and sustainable manufacturing. Recently, organic solvent nanofiltration (OSN) has emerged as an energy-efficient membrane technology for solvent recovery; however, current OSN membranes are largely fabricated by trial-and-error methods. In this study, for the first time, we develop a machine learning (ML) approach to design new thin-film composite membranes for solvent recovery. The monomers used in interfacial polymerization, along with membrane, solvent and solute properties, are featurized to train ML models via gradient boosting regression. The ML models demonstrate high accuracy in predicting OSN performance including solvent permeance and solute rejection. Subsequently, 167 new membranes are designed from 40 monomers and their OSN performance is predicted by the ML models for common solvents (methanol, acetone, dimethylformamide, and n-hexane). New top-performing membranes are identified with methanol permeance superior to that of existing membranes. Particularly, nitrogen-containing heterocyclic monomers are found to enhance microporosity and contribute to higher permeance. Finally, one new membrane is experimentally synthesized and tested to validate the ML predictions. Based on the chemical structures of monomers, the ML approach developed here provides a bottom-up strategy toward the rational design of new membranes for high-performance solvent recovery and many other technologically important applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助zuzu采纳,获得10
3秒前
3秒前
4秒前
无情的冰香完成签到 ,获得积分10
6秒前
朱一龙完成签到,获得积分10
6秒前
11秒前
Criminology34举报ddrose求助涉嫌违规
11秒前
阿朱完成签到 ,获得积分10
12秒前
汉堡包应助孔夫子采纳,获得10
13秒前
天天快乐应助庾稀采纳,获得10
13秒前
chengxiping发布了新的文献求助10
13秒前
13秒前
yangyangyang完成签到,获得积分10
14秒前
15秒前
JohanXu完成签到,获得积分10
16秒前
深情安青应助wd采纳,获得10
17秒前
19秒前
yyy发布了新的文献求助10
19秒前
20秒前
rainbow完成签到,获得积分10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得80
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
23秒前
DDL发布了新的文献求助10
24秒前
倾抚发布了新的文献求助10
25秒前
郴欧尼发布了新的文献求助10
25秒前
绾妤完成签到 ,获得积分0
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040