Machine Learning-Assisted Design of Thin-Film Composite Membranes for Solvent Recovery

渗透 纳滤 溶剂 化学工程 二甲基甲酰胺 单体 丙酮 材料科学 甲醇 复合数 化学 聚合物 有机化学 复合材料 工程类 渗透 生物化学
作者
Mao Wang,Gui Min Shi,Daohui Zhao,Xinyi Liu,Jianwen Jiang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (42): 15914-15924 被引量:17
标识
DOI:10.1021/acs.est.3c04773
摘要

Organic solvents are extensively utilized in industries as raw materials, reaction media, and cleaning agents. It is crucial to efficiently recover solvents for environmental protection and sustainable manufacturing. Recently, organic solvent nanofiltration (OSN) has emerged as an energy-efficient membrane technology for solvent recovery; however, current OSN membranes are largely fabricated by trial-and-error methods. In this study, for the first time, we develop a machine learning (ML) approach to design new thin-film composite membranes for solvent recovery. The monomers used in interfacial polymerization, along with membrane, solvent and solute properties, are featurized to train ML models via gradient boosting regression. The ML models demonstrate high accuracy in predicting OSN performance including solvent permeance and solute rejection. Subsequently, 167 new membranes are designed from 40 monomers and their OSN performance is predicted by the ML models for common solvents (methanol, acetone, dimethylformamide, and n-hexane). New top-performing membranes are identified with methanol permeance superior to that of existing membranes. Particularly, nitrogen-containing heterocyclic monomers are found to enhance microporosity and contribute to higher permeance. Finally, one new membrane is experimentally synthesized and tested to validate the ML predictions. Based on the chemical structures of monomers, the ML approach developed here provides a bottom-up strategy toward the rational design of new membranes for high-performance solvent recovery and many other technologically important applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助leec采纳,获得30
刚刚
炙热萝发布了新的文献求助10
1秒前
Auh完成签到,获得积分10
1秒前
AN发布了新的文献求助10
1秒前
hailey发布了新的文献求助10
3秒前
4秒前
zhuhe完成签到,获得积分10
4秒前
4秒前
丰知然应助小点点采纳,获得10
5秒前
13发布了新的文献求助10
5秒前
Hu完成签到,获得积分20
6秒前
6秒前
Hayat发布了新的文献求助50
6秒前
烟花应助灵巧的石头采纳,获得10
6秒前
7秒前
大模型应助调皮的巧凡采纳,获得10
7秒前
7秒前
7秒前
别管我了完成签到,获得积分10
7秒前
8秒前
yxy发布了新的文献求助10
8秒前
健康小宋完成签到,获得积分10
8秒前
斯文败类应助CDX采纳,获得10
8秒前
善良的函发布了新的文献求助10
9秒前
打打应助含蓄的傲霜采纳,获得10
10秒前
11秒前
11秒前
12秒前
wanci应助13采纳,获得10
12秒前
silentforsure发布了新的文献求助10
13秒前
llyu完成签到,获得积分10
13秒前
嘟嘟完成签到,获得积分10
13秒前
樱书发布了新的文献求助10
13秒前
13秒前
binz完成签到,获得积分0
14秒前
奋力加载ing完成签到,获得积分20
15秒前
lzxucn发布了新的文献求助10
15秒前
在水一方应助灵巧的石头采纳,获得10
15秒前
3089ggf发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657