Machine Learning-Assisted Design of Thin-Film Composite Membranes for Solvent Recovery

渗透 纳滤 溶剂 化学工程 二甲基甲酰胺 单体 丙酮 材料科学 甲醇 复合数 化学 聚合物 有机化学 复合材料 工程类 渗透 生物化学
作者
Mao Wang,Gui Min Shi,Daohui Zhao,Xinyi Liu,Jianwen Jiang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (42): 15914-15924 被引量:7
标识
DOI:10.1021/acs.est.3c04773
摘要

Organic solvents are extensively utilized in industries as raw materials, reaction media, and cleaning agents. It is crucial to efficiently recover solvents for environmental protection and sustainable manufacturing. Recently, organic solvent nanofiltration (OSN) has emerged as an energy-efficient membrane technology for solvent recovery; however, current OSN membranes are largely fabricated by trial-and-error methods. In this study, for the first time, we develop a machine learning (ML) approach to design new thin-film composite membranes for solvent recovery. The monomers used in interfacial polymerization, along with membrane, solvent and solute properties, are featurized to train ML models via gradient boosting regression. The ML models demonstrate high accuracy in predicting OSN performance including solvent permeance and solute rejection. Subsequently, 167 new membranes are designed from 40 monomers and their OSN performance is predicted by the ML models for common solvents (methanol, acetone, dimethylformamide, and n-hexane). New top-performing membranes are identified with methanol permeance superior to that of existing membranes. Particularly, nitrogen-containing heterocyclic monomers are found to enhance microporosity and contribute to higher permeance. Finally, one new membrane is experimentally synthesized and tested to validate the ML predictions. Based on the chemical structures of monomers, the ML approach developed here provides a bottom-up strategy toward the rational design of new membranes for high-performance solvent recovery and many other technologically important applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得30
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
Accepted应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
李佳洲完成签到,获得积分10
3秒前
3秒前
海鸥完成签到,获得积分10
4秒前
5秒前
zwenng发布了新的文献求助10
5秒前
asd发布了新的文献求助10
5秒前
6秒前
东郭凡旋完成签到,获得积分10
6秒前
一只呆呆关注了科研通微信公众号
7秒前
7秒前
8秒前
10秒前
11秒前
温暖哈密瓜完成签到 ,获得积分10
11秒前
11秒前
猪蹄侠客发布了新的文献求助10
11秒前
12秒前
12秒前
sue发布了新的文献求助10
13秒前
爆米花应助21采纳,获得10
13秒前
zzzz发布了新的文献求助10
14秒前
酷波er应助JTB采纳,获得10
14秒前
15秒前
15秒前
小王发布了新的文献求助10
15秒前
田野的小家庭完成签到,获得积分10
16秒前
DAWN完成签到 ,获得积分10
17秒前
hai发布了新的文献求助10
17秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803043
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302778
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237