已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of survival in patients with infected pancreatic necrosis: a prospective cohort study

列线图 医学 比例危险模型 逻辑回归 生存分析 内科学 前瞻性队列研究 队列 接收机工作特性 外科
作者
Caihong Ning,Hui Ouyang,Dingcheng Shen,Zefang Sun,Baiqi Liu,Xiao‐Yue Hong,Chyi‐Her Lin,Jiarong Li,Lu Chen,Xinying Li,Gengwen Huang
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:6
标识
DOI:10.1097/js9.0000000000000844
摘要

Infected pancreatic necrosis (IPN) is a severe complication of acute pancreatitis, with mortality rates ranging from 15 to 35%. However, limited studies exist to predict the survival of IPN patients and nomogram has never been built. This study aimed to identify predictors of mortality, estimate conditional survival (CS), and develop a CS nomogram and logistic regression nomogram for real-time prediction of survival in IPN patients. A prospective cohort study was performed in 335 IPN patients consecutively enrolled at a large Chinese tertiary hospital from January 2011 to December 2022. The random survival forest method was first employed to identify the most significant predictors and capture clinically relevant nonlinear threshold effects. Instantaneous death risk and CS was first utilized to reveal the dynamic changes in the survival of IPN patients. A Cox model-based nomogram incorporating CS and a logistic regression-based nomogram were first developed and internally validated with a bootstrap method. The random survival forest model identified seven foremost predictors of mortality, including the number of organ failures, duration of organ failure, age, time from onset to first intervention, hemorrhage, bloodstream infection, and severity classification. Duration of organ failure and time from onset to first intervention showed distinct thresholds and nonlinear relationships with mortality. Instantaneous death risk reduced progressively within the first 30 days, and CS analysis indicated gradual improvement in real-time survival since diagnosis, with 90-day survival rates gradually increasing from 0.778 to 0.838, 0.881, 0.974, and 0.992 after surviving 15, 30, 45, 60, and 75 days, respectively. After further variables selection using step regression, five predictors (age, number of organ failures, hemorrhage, time from onset to first intervention, and bloodstream infection) were utilized to construct both the CS nomogram and logistic regression nomogram, both of which demonstrated excellent performance with 1000 bootstrap. Number of organ failures, duration of organ failure, age, time from onset to first intervention, hemorrhage, bloodstream infection, and severity classification were the most crucial predictors of mortality of IPN patients. The CS nomogram and logistic regression nomogram constructed by these predictors could help clinicians to predict real-time survival and optimize clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助jixuzhuixun采纳,获得10
1秒前
2秒前
郭曦铖发布了新的文献求助10
2秒前
Tang_LiLi发布了新的文献求助10
3秒前
3秒前
王的江完成签到,获得积分20
4秒前
FOOL发布了新的文献求助10
4秒前
5秒前
Stove发布了新的文献求助10
6秒前
7秒前
凤凰山发布了新的文献求助10
8秒前
鱼羊明完成签到 ,获得积分10
8秒前
慕玖淇完成签到 ,获得积分10
9秒前
9秒前
英俊的念寒完成签到,获得积分10
9秒前
10秒前
王的江发布了新的文献求助10
10秒前
qjx1129发布了新的文献求助10
12秒前
Karma应助凤凰山采纳,获得10
14秒前
灿烂阳光下的稻田完成签到,获得积分10
14秒前
下雨天完成签到,获得积分10
15秒前
我是老大应助奥特曼采纳,获得10
15秒前
17秒前
科研通AI2S应助郭曦铖采纳,获得10
17秒前
17秒前
18秒前
Cwx2020完成签到,获得积分10
18秒前
卢孤菱发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
21秒前
iiopp发布了新的文献求助30
22秒前
trans发布了新的文献求助10
22秒前
22秒前
24秒前
jiajia发布了新的文献求助10
25秒前
jingcheng完成签到,获得积分10
25秒前
llian关注了科研通微信公众号
26秒前
Zm发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4278830
求助须知:如何正确求助?哪些是违规求助? 3807366
关于积分的说明 11928300
捐赠科研通 3454582
什么是DOI,文献DOI怎么找? 1894404
邀请新用户注册赠送积分活动 944114
科研通“疑难数据库(出版商)”最低求助积分说明 847920