Deep Learning-Based Interpretable AI for Prostate T2W MRI Quality Evaluation

可用性 质量得分 计算机科学 质量(理念) 医学 人工智能 再现性 医学物理学 质量保证 质量评定 机器学习 数据挖掘 模式识别(心理学) 统计 数学 公制(单位) 病理 哲学 认识论 运营管理 外部质量评估 人机交互 经济
作者
Mason J. Belue,Yan Mee Law,Jamie Marko,Evrim Türkbey,Ashkan A. Malayeri,Enis C. Yılmaz,Yue Lin,Latrice Johnson,Katie Merriman,Nathan Lay,Bradford J. Wood,Peter A. Pinto,Peter L. Choyke,Stephanie A. Harmon,Barış Türkbey
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (4): 1429-1437 被引量:12
标识
DOI:10.1016/j.acra.2023.09.030
摘要

Rationale and Objectives Prostate MRI quality is essential in guiding prostate biopsies. However, assessment of MRI quality is subjective with variation. Quality degradation sources exert varying impacts based on the sequence under consideration, such as T2W versus DWI. As a result, employing sequence-specific techniques for quality assessment could yield more advantageous outcomes. This study aims to develop an AI tool that offers a more consistent evaluation of T2W prostate MRI quality, efficiently identifying suboptimal scans while minimizing user bias. Materials and Methods This retrospective study included 1046 patients from three cohorts (ProstateX [n = 347], All-comer in-house [n = 602], enriched bad-quality MRI in-house [n = 97]) scanned between January 2011 and May 2022. An expert reader assigned T2W MRIs a quality score. A train-validation-test split of 70:15:15 was applied, ensuring equal distribution of MRI scanners and protocols across all partitions. T2W quality AI classification model was based on 3D DenseNet121 architecture using MONAI framework. In addition to multiclassification, binary classification was utilized (Classes 0/1 vs. 2). A score of 0 was given to scans considered non-diagnostic or unusable, a score of 1 was given to those with acceptable diagnostic quality with some usability but with some quality distortions present, and a score of 2 was given to those considered optimal diagnostic quality and usability. Partial occlusion sensitivity maps were generated for anatomical correlation. Three body radiologists assessed reproducibility within a subgroup of 60 test cases using weighted Cohen Kappa. Results The best validation multiclass accuracy of 77.1% (121/157) was achieved during training. In the test dataset, multiclassification accuracy was 73.9% (116/157), whereas binary accuracy was 84.7% (133/157). Sub-class sensitivity for binary quality distortion classification for class 0 was 100% (18/18), and sub-class specificity for T2W classification of absence/minimal quality distortions for class 2 was 90.5% (95/105). All three readers showed moderate to substantial agreement with ground truth (R1-R3 κ = 0.588, κ = 0.649, κ = 0.487, respectively), moderate to substantial agreement with each other (R1-R2 κ = 0.599, R1-R3 κ = 0.612, R2-R3 κ = 0.685), fair to moderate agreement with AI (R1-R3 κ = 0.445, κ = 0.410, κ = 0.292, respectively). AI showed substantial agreement with ground truth (κ = 0.704). 3D quality heatmap evaluation revealed that the most critical non-diagnostic quality imaging features from an AI perspective related to obscuration of the rectoprostatic space (94.4%, 17/18). Conclusion The 3D AI model can assess T2W prostate MRI quality with moderate accuracy and translate whole sequence-level classification labels into 3D voxel-level quality heatmaps for interpretation. Image quality has a significant downstream impact on ruling out clinically significant cancers. AI may be able to help with reproducible identification of MRI sequences requiring re-acquisition with explainability. Prostate MRI quality is essential in guiding prostate biopsies. However, assessment of MRI quality is subjective with variation. Quality degradation sources exert varying impacts based on the sequence under consideration, such as T2W versus DWI. As a result, employing sequence-specific techniques for quality assessment could yield more advantageous outcomes. This study aims to develop an AI tool that offers a more consistent evaluation of T2W prostate MRI quality, efficiently identifying suboptimal scans while minimizing user bias. This retrospective study included 1046 patients from three cohorts (ProstateX [n = 347], All-comer in-house [n = 602], enriched bad-quality MRI in-house [n = 97]) scanned between January 2011 and May 2022. An expert reader assigned T2W MRIs a quality score. A train-validation-test split of 70:15:15 was applied, ensuring equal distribution of MRI scanners and protocols across all partitions. T2W quality AI classification model was based on 3D DenseNet121 architecture using MONAI framework. In addition to multiclassification, binary classification was utilized (Classes 0/1 vs. 2). A score of 0 was given to scans considered non-diagnostic or unusable, a score of 1 was given to those with acceptable diagnostic quality with some usability but with some quality distortions present, and a score of 2 was given to those considered optimal diagnostic quality and usability. Partial occlusion sensitivity maps were generated for anatomical correlation. Three body radiologists assessed reproducibility within a subgroup of 60 test cases using weighted Cohen Kappa. The best validation multiclass accuracy of 77.1% (121/157) was achieved during training. In the test dataset, multiclassification accuracy was 73.9% (116/157), whereas binary accuracy was 84.7% (133/157). Sub-class sensitivity for binary quality distortion classification for class 0 was 100% (18/18), and sub-class specificity for T2W classification of absence/minimal quality distortions for class 2 was 90.5% (95/105). All three readers showed moderate to substantial agreement with ground truth (R1-R3 κ = 0.588, κ = 0.649, κ = 0.487, respectively), moderate to substantial agreement with each other (R1-R2 κ = 0.599, R1-R3 κ = 0.612, R2-R3 κ = 0.685), fair to moderate agreement with AI (R1-R3 κ = 0.445, κ = 0.410, κ = 0.292, respectively). AI showed substantial agreement with ground truth (κ = 0.704). 3D quality heatmap evaluation revealed that the most critical non-diagnostic quality imaging features from an AI perspective related to obscuration of the rectoprostatic space (94.4%, 17/18). The 3D AI model can assess T2W prostate MRI quality with moderate accuracy and translate whole sequence-level classification labels into 3D voxel-level quality heatmaps for interpretation. Image quality has a significant downstream impact on ruling out clinically significant cancers. AI may be able to help with reproducible identification of MRI sequences requiring re-acquisition with explainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bing完成签到,获得积分10
1秒前
lth完成签到 ,获得积分10
1秒前
ZunyeLiu完成签到,获得积分10
1秒前
Summering666完成签到,获得积分10
2秒前
2秒前
大个应助linyu采纳,获得10
2秒前
3秒前
霜之哀伤完成签到,获得积分10
3秒前
XS_QI完成签到 ,获得积分10
4秒前
唧唧咕咕发布了新的文献求助10
4秒前
Ck发布了新的文献求助10
4秒前
4秒前
收集快乐完成签到 ,获得积分10
5秒前
leo007发布了新的文献求助10
6秒前
雪满头发布了新的文献求助10
6秒前
7秒前
牧童完成签到 ,获得积分20
7秒前
蓝天发布了新的文献求助10
7秒前
Lily完成签到,获得积分10
9秒前
我不会乱起名字的完成签到,获得积分10
11秒前
当时的发布了新的文献求助10
11秒前
沙糖桔完成签到,获得积分10
11秒前
荔枝发布了新的文献求助10
11秒前
科研通AI2S应助LZH采纳,获得10
12秒前
小橘完成签到,获得积分10
13秒前
三毛完成签到 ,获得积分10
13秒前
滴滴哩哩完成签到,获得积分10
14秒前
王燕峰发布了新的文献求助10
16秒前
Ck完成签到,获得积分10
16秒前
ts完成签到,获得积分10
17秒前
finish完成签到 ,获得积分10
18秒前
搞怪的寄文完成签到 ,获得积分10
18秒前
dd完成签到,获得积分10
20秒前
foyefeng发布了新的文献求助10
20秒前
21秒前
Orange应助Mon采纳,获得10
21秒前
22秒前
诸岩完成签到,获得积分10
22秒前
飞飞完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603665
求助须知:如何正确求助?哪些是违规求助? 4688648
关于积分的说明 14855380
捐赠科研通 4694577
什么是DOI,文献DOI怎么找? 2540936
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471814