Fault diagnosis for spent fuel shearing machines based on Bayesian optimization and CBAM-ResNet

剪切(物理) 超参数 计算机科学 可靠性工程 算法 工程类 岩土工程
作者
Pingping Wang,Jia−Hua Chen,Zelin Wang,Wenhan Shao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025901-025901 被引量:1
标识
DOI:10.1088/1361-6501/ad03b3
摘要

Abstract Spent fuel shearing machines in nuclear power plants are important equipment for the head end of spent fuel reprocessing in power reactors. Condition monitoring and fault diagnosis play important roles in ensuring the safe operation of spent fuel shearing machines, avoiding serious accidents, and reducing their maintenance time and cost. Existing research on fault diagnosis of spent fuel shearing machines has some shortcomings: (a) the current research on fault diagnosis of shearing machines is small and diagnostic accuracy is not high. The research methodology of shearing machines needs to be updated; (b) the high difficulty in obtaining fault data and the often limited and highly informative fault data for shearing machines lead to low diagnostic performance. To solve these problems, this study constructs a residual network (ResNet) model based on Bayesian optimization (BO) and convolutional block attention module (CBAM). First, dual-channel difference method is introduced into the preprocessing of noise signals, and two data enhancements were applied to the Mel spectrograms used as inputs to the model. Second, the attention mechanism CBAM is introduced to improve the ResNet to enhance the deep feature extraction ability of the network, and the BO algorithm is used to train the hyperparameters, such as the optimizer, and retrain the network model after obtaining the optimal hyperparameters. Finally, the feasibility and effectiveness of the proposed model are verified through experiments on the noise signals of spent fuel shearing machines. The experimental results show that the diagnostic accuracy of the constructed model is 93.67%, which is a significant improvement over the other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hilm应助第二支羽毛采纳,获得10
刚刚
爱看论文的小K完成签到 ,获得积分10
刚刚
专注鼠标完成签到,获得积分10
1秒前
zhouyms完成签到,获得积分10
1秒前
害羞的靖荷完成签到,获得积分10
1秒前
2秒前
奶萌兔兔酱完成签到,获得积分10
2秒前
2秒前
Czt发布了新的文献求助10
2秒前
剑来发布了新的文献求助10
3秒前
勤奋幻柏完成签到,获得积分10
5秒前
qiang344完成签到 ,获得积分0
6秒前
6秒前
6秒前
舒适的洋葱给舒适的洋葱的求助进行了留言
6秒前
7秒前
7秒前
清淮发布了新的文献求助10
8秒前
9秒前
Czt完成签到,获得积分10
11秒前
合适惊蛰完成签到,获得积分20
11秒前
Eve发布了新的文献求助10
12秒前
内向的香旋完成签到 ,获得积分10
12秒前
12秒前
DNA完成签到,获得积分10
12秒前
dynamoo给dynamoo的求助进行了留言
12秒前
导师老八发布了新的文献求助10
13秒前
111发布了新的文献求助10
13秒前
DXX完成签到,获得积分10
15秒前
苗浩阳发布了新的文献求助10
15秒前
柒柒发布了新的文献求助10
16秒前
sam完成签到,获得积分10
16秒前
16秒前
高高代珊完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
xixi完成签到,获得积分10
19秒前
小氯气完成签到,获得积分10
19秒前
秉烛游完成签到,获得积分10
19秒前
20秒前
万能图书馆应助剑来采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465483
求助须知:如何正确求助?哪些是违规求助? 4569773
关于积分的说明 14321003
捐赠科研通 4496233
什么是DOI,文献DOI怎么找? 2463208
邀请新用户注册赠送积分活动 1452166
关于科研通互助平台的介绍 1427336