Fault diagnosis for spent fuel shearing machines based on Bayesian optimization and CBAM-ResNet

剪切(物理) 超参数 计算机科学 可靠性工程 算法 工程类 岩土工程
作者
Pingping Wang,Jia−Hua Chen,Zelin Wang,Wenhan Shao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025901-025901 被引量:1
标识
DOI:10.1088/1361-6501/ad03b3
摘要

Abstract Spent fuel shearing machines in nuclear power plants are important equipment for the head end of spent fuel reprocessing in power reactors. Condition monitoring and fault diagnosis play important roles in ensuring the safe operation of spent fuel shearing machines, avoiding serious accidents, and reducing their maintenance time and cost. Existing research on fault diagnosis of spent fuel shearing machines has some shortcomings: (a) the current research on fault diagnosis of shearing machines is small and diagnostic accuracy is not high. The research methodology of shearing machines needs to be updated; (b) the high difficulty in obtaining fault data and the often limited and highly informative fault data for shearing machines lead to low diagnostic performance. To solve these problems, this study constructs a residual network (ResNet) model based on Bayesian optimization (BO) and convolutional block attention module (CBAM). First, dual-channel difference method is introduced into the preprocessing of noise signals, and two data enhancements were applied to the Mel spectrograms used as inputs to the model. Second, the attention mechanism CBAM is introduced to improve the ResNet to enhance the deep feature extraction ability of the network, and the BO algorithm is used to train the hyperparameters, such as the optimizer, and retrain the network model after obtaining the optimal hyperparameters. Finally, the feasibility and effectiveness of the proposed model are verified through experiments on the noise signals of spent fuel shearing machines. The experimental results show that the diagnostic accuracy of the constructed model is 93.67%, which is a significant improvement over the other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮浮世世发布了新的文献求助50
刚刚
开朗发卡完成签到,获得积分10
刚刚
我是老大应助浮生采纳,获得10
刚刚
lj完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
xxfsx应助qq采纳,获得10
3秒前
李子完成签到,获得积分10
3秒前
瞿访云完成签到,获得积分10
3秒前
爱听歌的盼易完成签到 ,获得积分10
3秒前
成就的凡松完成签到,获得积分10
4秒前
黎明完成签到,获得积分10
4秒前
大王完成签到,获得积分10
4秒前
4秒前
simon完成签到 ,获得积分10
4秒前
简单的易云完成签到,获得积分10
4秒前
丘比特应助dengyingni采纳,获得10
4秒前
yxy完成签到,获得积分10
4秒前
小柒柒完成签到,获得积分10
5秒前
wmm20035完成签到,获得积分10
5秒前
不想摆烂o完成签到,获得积分10
5秒前
5秒前
哈密瓜牛奶完成签到,获得积分10
5秒前
成就钧完成签到,获得积分10
5秒前
M张完成签到,获得积分10
5秒前
清水小镇完成签到,获得积分10
5秒前
绊宸完成签到,获得积分10
6秒前
yancy发布了新的文献求助10
6秒前
HHW完成签到,获得积分10
6秒前
6秒前
Sakura完成签到 ,获得积分10
7秒前
胖虎完成签到,获得积分10
7秒前
乔乔完成签到,获得积分10
7秒前
尹恩惠完成签到,获得积分10
8秒前
Gary完成签到,获得积分10
8秒前
坚定的傲易完成签到,获得积分10
8秒前
cmh完成签到 ,获得积分10
9秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387913
求助须知:如何正确求助?哪些是违规求助? 4509807
关于积分的说明 14032817
捐赠科研通 4420679
什么是DOI,文献DOI怎么找? 2428386
邀请新用户注册赠送积分活动 1420983
关于科研通互助平台的介绍 1400213