Fault diagnosis for spent fuel shearing machines based on Bayesian optimization and CBAM-ResNet

剪切(物理) 超参数 计算机科学 可靠性工程 算法 工程类 岩土工程
作者
Pingping Wang,Jia−Hua Chen,Zelin Wang,Wenhan Shao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025901-025901 被引量:1
标识
DOI:10.1088/1361-6501/ad03b3
摘要

Abstract Spent fuel shearing machines in nuclear power plants are important equipment for the head end of spent fuel reprocessing in power reactors. Condition monitoring and fault diagnosis play important roles in ensuring the safe operation of spent fuel shearing machines, avoiding serious accidents, and reducing their maintenance time and cost. Existing research on fault diagnosis of spent fuel shearing machines has some shortcomings: (a) the current research on fault diagnosis of shearing machines is small and diagnostic accuracy is not high. The research methodology of shearing machines needs to be updated; (b) the high difficulty in obtaining fault data and the often limited and highly informative fault data for shearing machines lead to low diagnostic performance. To solve these problems, this study constructs a residual network (ResNet) model based on Bayesian optimization (BO) and convolutional block attention module (CBAM). First, dual-channel difference method is introduced into the preprocessing of noise signals, and two data enhancements were applied to the Mel spectrograms used as inputs to the model. Second, the attention mechanism CBAM is introduced to improve the ResNet to enhance the deep feature extraction ability of the network, and the BO algorithm is used to train the hyperparameters, such as the optimizer, and retrain the network model after obtaining the optimal hyperparameters. Finally, the feasibility and effectiveness of the proposed model are verified through experiments on the noise signals of spent fuel shearing machines. The experimental results show that the diagnostic accuracy of the constructed model is 93.67%, which is a significant improvement over the other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dagong-xz完成签到,获得积分10
1秒前
JamesPei应助假面绅士采纳,获得10
2秒前
bkagyin应助zhumengyu采纳,获得10
4秒前
4秒前
zigzag完成签到,获得积分10
4秒前
ty完成签到 ,获得积分10
6秒前
7秒前
陈补天发布了新的文献求助10
10秒前
11秒前
13秒前
14秒前
zhumengyu发布了新的文献求助10
16秒前
嘎嘎嘎发布了新的文献求助10
17秒前
20秒前
ty完成签到,获得积分10
21秒前
PWG发布了新的文献求助10
22秒前
丘比特应助Xide采纳,获得10
23秒前
科研通AI2S应助zorro3574采纳,获得10
23秒前
英俊的铭应助魔幻熊猫采纳,获得10
23秒前
24秒前
24秒前
zhumengyu完成签到,获得积分10
25秒前
唐文硕发布了新的文献求助20
28秒前
柿子霖完成签到 ,获得积分10
28秒前
眯眯眼的山柳完成签到 ,获得积分10
29秒前
30秒前
科研通AI2S应助瞿寒采纳,获得30
30秒前
31秒前
Owen应助不喝奶茶采纳,获得10
32秒前
34秒前
34秒前
烂漫的豆芽完成签到,获得积分10
34秒前
桐桐应助自觉的以寒采纳,获得10
34秒前
舒适静丹发布了新的文献求助10
35秒前
如意的代桃完成签到,获得积分10
36秒前
36秒前
37秒前
37秒前
37秒前
魔幻熊猫发布了新的文献求助10
39秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141624
求助须知:如何正确求助?哪些是违规求助? 2792563
关于积分的说明 7803506
捐赠科研通 2448811
什么是DOI,文献DOI怎么找? 1302925
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601240