Fault diagnosis for spent fuel shearing machines based on Bayesian optimization and CBAM-ResNet

剪切(物理) 超参数 计算机科学 可靠性工程 算法 工程类 岩土工程
作者
Pingping Wang,Jia−Hua Chen,Zelin Wang,Wenhan Shao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025901-025901 被引量:1
标识
DOI:10.1088/1361-6501/ad03b3
摘要

Abstract Spent fuel shearing machines in nuclear power plants are important equipment for the head end of spent fuel reprocessing in power reactors. Condition monitoring and fault diagnosis play important roles in ensuring the safe operation of spent fuel shearing machines, avoiding serious accidents, and reducing their maintenance time and cost. Existing research on fault diagnosis of spent fuel shearing machines has some shortcomings: (a) the current research on fault diagnosis of shearing machines is small and diagnostic accuracy is not high. The research methodology of shearing machines needs to be updated; (b) the high difficulty in obtaining fault data and the often limited and highly informative fault data for shearing machines lead to low diagnostic performance. To solve these problems, this study constructs a residual network (ResNet) model based on Bayesian optimization (BO) and convolutional block attention module (CBAM). First, dual-channel difference method is introduced into the preprocessing of noise signals, and two data enhancements were applied to the Mel spectrograms used as inputs to the model. Second, the attention mechanism CBAM is introduced to improve the ResNet to enhance the deep feature extraction ability of the network, and the BO algorithm is used to train the hyperparameters, such as the optimizer, and retrain the network model after obtaining the optimal hyperparameters. Finally, the feasibility and effectiveness of the proposed model are verified through experiments on the noise signals of spent fuel shearing machines. The experimental results show that the diagnostic accuracy of the constructed model is 93.67%, which is a significant improvement over the other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
卞卞完成签到,获得积分10
3秒前
15秒前
火星上小土豆完成签到 ,获得积分10
15秒前
爱撒娇的孤丹完成签到 ,获得积分10
17秒前
xc完成签到,获得积分10
17秒前
CHANG完成签到 ,获得积分10
19秒前
陈海明发布了新的文献求助10
19秒前
pep完成签到 ,获得积分10
26秒前
科研小哥完成签到,获得积分10
27秒前
小谭完成签到 ,获得积分10
28秒前
连难胜完成签到 ,获得积分10
30秒前
友好语风完成签到,获得积分10
34秒前
陈海明完成签到,获得积分10
37秒前
ikun0000完成签到,获得积分10
49秒前
她的城完成签到,获得积分0
50秒前
54秒前
ding应助烂漫的汲采纳,获得10
56秒前
胡杨发布了新的文献求助10
58秒前
Wmhan完成签到 ,获得积分10
59秒前
寇婧怡完成签到 ,获得积分10
59秒前
股价发布了新的文献求助10
1分钟前
糊涂涂完成签到 ,获得积分10
1分钟前
烂漫的汲完成签到,获得积分10
1分钟前
1分钟前
包子牛奶完成签到,获得积分10
1分钟前
我啊完成签到 ,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
深情安青应助股价采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
Jason-1024完成签到,获得积分10
1分钟前
北国雪未消完成签到 ,获得积分10
1分钟前
1分钟前
研友_VZGVzn完成签到,获得积分10
1分钟前
如意枫叶发布了新的文献求助10
1分钟前
yuntong完成签到 ,获得积分0
1分钟前
科研通AI2S应助heli采纳,获得10
1分钟前
米博士完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965769
求助须知:如何正确求助?哪些是违规求助? 3510991
关于积分的说明 11155985
捐赠科研通 3245486
什么是DOI,文献DOI怎么找? 1793074
邀请新用户注册赠送积分活动 874215
科研通“疑难数据库(出版商)”最低求助积分说明 804255