Fault diagnosis for spent fuel shearing machines based on Bayesian optimization and CBAM-ResNet

剪切(物理) 超参数 计算机科学 可靠性工程 算法 工程类 岩土工程
作者
Pingping Wang,Jia−Hua Chen,Zelin Wang,Wenhan Shao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025901-025901 被引量:1
标识
DOI:10.1088/1361-6501/ad03b3
摘要

Abstract Spent fuel shearing machines in nuclear power plants are important equipment for the head end of spent fuel reprocessing in power reactors. Condition monitoring and fault diagnosis play important roles in ensuring the safe operation of spent fuel shearing machines, avoiding serious accidents, and reducing their maintenance time and cost. Existing research on fault diagnosis of spent fuel shearing machines has some shortcomings: (a) the current research on fault diagnosis of shearing machines is small and diagnostic accuracy is not high. The research methodology of shearing machines needs to be updated; (b) the high difficulty in obtaining fault data and the often limited and highly informative fault data for shearing machines lead to low diagnostic performance. To solve these problems, this study constructs a residual network (ResNet) model based on Bayesian optimization (BO) and convolutional block attention module (CBAM). First, dual-channel difference method is introduced into the preprocessing of noise signals, and two data enhancements were applied to the Mel spectrograms used as inputs to the model. Second, the attention mechanism CBAM is introduced to improve the ResNet to enhance the deep feature extraction ability of the network, and the BO algorithm is used to train the hyperparameters, such as the optimizer, and retrain the network model after obtaining the optimal hyperparameters. Finally, the feasibility and effectiveness of the proposed model are verified through experiments on the noise signals of spent fuel shearing machines. The experimental results show that the diagnostic accuracy of the constructed model is 93.67%, which is a significant improvement over the other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝴蝶完成签到,获得积分20
刚刚
1秒前
李爱国应助apong采纳,获得10
2秒前
HongJiang完成签到,获得积分10
3秒前
4秒前
4秒前
福尔摩琪完成签到,获得积分10
4秒前
4秒前
刘志超完成签到,获得积分10
4秒前
creek1110关注了科研通微信公众号
5秒前
斯文败类应助初余采纳,获得10
6秒前
xiaowang完成签到,获得积分10
6秒前
韩世星完成签到,获得积分10
6秒前
壮壮完成签到,获得积分10
7秒前
7秒前
呆呆发布了新的文献求助10
7秒前
8秒前
不爱吃泡面完成签到,获得积分10
8秒前
111发布了新的文献求助20
8秒前
小葫芦完成签到 ,获得积分10
9秒前
年轻的飞风完成签到,获得积分10
9秒前
李健应助一期一会采纳,获得10
9秒前
李健应助wise111采纳,获得10
9秒前
粥粥完成签到 ,获得积分10
11秒前
11秒前
爆米花应助daqisong采纳,获得10
11秒前
元2333发布了新的文献求助20
11秒前
11秒前
爆米花应助小椰采纳,获得10
11秒前
12秒前
12秒前
12秒前
12秒前
烟花应助vv采纳,获得10
12秒前
13秒前
13秒前
小蘑菇应助Gnor采纳,获得10
13秒前
星辰大海应助机灵的南蕾采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
qqxin完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932