Mind the gap: population ageing and health financing sustainability

人口老龄化 收入 业务 人口 人口健康 公共卫生 卫生政策 持续性 医疗保健 财务 公共经济学 经济增长 经济 环境卫生 医学 生态学 护理部 生物
作者
Jonathan Cylus,Gemma Williams,Sarah Barber,Tomáš Roubal
出处
期刊:European journal of public health [Oxford University Press]
卷期号:31 (Supplement_3) 被引量:1
标识
DOI:10.1093/eurpub/ckab164.558
摘要

Abstract Background Models used to forecast the effects of population ageing on health financing usually only explore effects on health spending, while neglecting effects on health revenues. Methods Using publicly available data, we construct simulation models to project how changes in the population age mix affect both public sector health revenues and expenditures across a range of countries representing a diverse mix of health financing systems in Europe as well as the Western Pacific (Australia, Bulgaria, Japan, Slovenia, United Kingdom and Vietnam). Results By 2100, the largest gap between health revenues and expenditures due to population ageing under current health financing arrangements is expected in Vietnam; the majority of that health financing gap (87.1%) is attributable to expected growth in health expenditures. In Slovenia and Japan, the financing gaps are forecast to reach less than half that of Vietnam by 2100; however, the reasons for the increases in gaps vary. In Slovenia, nearly half of the increase in the gap (44.2%) is due to reductions in health revenues compared with just under one-third (28.7%) in Japan. Conclusions There is a perception that population ageing will have deleterious effects on the sustainability of public sector health financing. However, this is highly dependent on how financing systems are designed. Our simulation models demonstrate that comparative analyses that give equal attention to both health expenditures and revenues provide decision makers a balanced set of policy options for addressing the challenges of population ageing. The options range from targeting expenditures and utilization of services to diversifying revenue generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专心搞学术完成签到,获得积分10
刚刚
FFF发布了新的文献求助10
刚刚
李小胖发布了新的文献求助20
刚刚
李健应助故意的绿竹采纳,获得10
刚刚
勤恳的断秋完成签到 ,获得积分10
1秒前
VDC发布了新的文献求助10
1秒前
1秒前
jasmine970000发布了新的文献求助100
1秒前
酷波er应助camellia采纳,获得10
2秒前
Zoe发布了新的文献求助10
2秒前
2秒前
2秒前
啊实打实完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
参上完成签到,获得积分10
5秒前
mingjie完成签到,获得积分10
5秒前
yam001完成签到,获得积分10
5秒前
aaaaa发布了新的文献求助10
5秒前
6秒前
牧紫菱完成签到,获得积分10
6秒前
7秒前
研友_RLN0vZ发布了新的文献求助10
7秒前
7秒前
7秒前
神勇的雅香应助001采纳,获得10
8秒前
研友_V8RDYn完成签到,获得积分10
8秒前
zzznznnn发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
FFFFFFF应助晓军采纳,获得10
11秒前
wanci应助艺玲采纳,获得10
11秒前
jfc完成签到 ,获得积分10
11秒前
香蕉觅云应助月白采纳,获得10
11秒前
思源应助mmx采纳,获得10
11秒前
Diaory2023完成签到 ,获得积分0
11秒前
雪小岳完成签到,获得积分10
12秒前
李小明完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762