MixSeg: a lightweight and accurate mix structure network for semantic segmentation of apple leaf disease in complex environments

分割 计算机科学 人工智能 尺度空间分割 编码器 模式识别(心理学) 基于分割的对象分类 图像分割 计算机视觉 操作系统
作者
Bibo Lu,Jiangwen Lu,Xinchao Xu,Yuxin Jin
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:14 被引量:4
标识
DOI:10.3389/fpls.2023.1233241
摘要

Semantic segmentation is effective in dealing with complex environments. However, the most popular semantic segmentation methods are usually based on a single structure, they are inefficient and inaccurate. In this work, we propose a mix structure network called MixSeg, which fully combines the advantages of convolutional neural network, Transformer, and multi-layer perception architectures.Specifically, MixSeg is an end-to-end semantic segmentation network, consisting of an encoder and a decoder. In the encoder, the Mix Transformer is designed to model globally and inject local bias into the model with less computational cost. The position indexer is developed to dynamically index absolute position information on the feature map. The local optimization module is designed to optimize the segmentation effect of the model on local edges and details. In the decoder, shallow and deep features are fused to output accurate segmentation results.Taking the apple leaf disease segmentation task in the real scene as an example, the segmentation effect of the MixSeg is verified. The experimental results show that MixSeg has the best segmentation effect and the lowest parameters and floating point operations compared with the mainstream semantic segmentation methods on small datasets. On apple alternaria blotch and apple grey spot leaf image datasets, the most lightweight MixSeg-T achieves 98.22%, 98.09% intersection over union for leaf segmentation and 87.40%, 86.20% intersection over union for disease segmentation.Thus, the performance of MixSeg demonstrates that it can provide a more efficient and stable method for accurate segmentation of leaves and diseases in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙燕应助俭朴千琴采纳,获得10
2秒前
screct完成签到,获得积分10
2秒前
Jiro完成签到,获得积分10
3秒前
高兴白山完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
专注洋葱完成签到,获得积分10
8秒前
Wang发布了新的文献求助10
9秒前
10秒前
专注洋葱发布了新的文献求助10
12秒前
12秒前
15秒前
共享精神应助Wang采纳,获得10
16秒前
派大欣发布了新的文献求助10
19秒前
20秒前
思源应助快乐的睫毛采纳,获得10
22秒前
Zsir给Zsir的求助进行了留言
24秒前
25秒前
WQY发布了新的文献求助10
28秒前
28秒前
30秒前
30秒前
30秒前
Orange应助燕一刀采纳,获得10
31秒前
33秒前
33秒前
34秒前
张浩发布了新的文献求助10
35秒前
38秒前
古月发布了新的文献求助10
40秒前
皮不起来的国国完成签到,获得积分10
40秒前
烂漫猫咪发布了新的文献求助10
40秒前
neonsun完成签到,获得积分0
42秒前
43秒前
派大欣完成签到,获得积分10
44秒前
ddddd发布了新的文献求助10
44秒前
47秒前
48秒前
青春完成签到 ,获得积分10
48秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993454
求助须知:如何正确求助?哪些是违规求助? 3534113
关于积分的说明 11264719
捐赠科研通 3273986
什么是DOI,文献DOI怎么找? 1806200
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662