MixSeg: a lightweight and accurate mix structure network for semantic segmentation of apple leaf disease in complex environments

分割 计算机科学 人工智能 尺度空间分割 编码器 模式识别(心理学) 基于分割的对象分类 图像分割 计算机视觉 操作系统
作者
Bibo Lu,Jiangwen Lu,Xinchao Xu,Yuxin Jin
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:14 被引量:4
标识
DOI:10.3389/fpls.2023.1233241
摘要

Semantic segmentation is effective in dealing with complex environments. However, the most popular semantic segmentation methods are usually based on a single structure, they are inefficient and inaccurate. In this work, we propose a mix structure network called MixSeg, which fully combines the advantages of convolutional neural network, Transformer, and multi-layer perception architectures.Specifically, MixSeg is an end-to-end semantic segmentation network, consisting of an encoder and a decoder. In the encoder, the Mix Transformer is designed to model globally and inject local bias into the model with less computational cost. The position indexer is developed to dynamically index absolute position information on the feature map. The local optimization module is designed to optimize the segmentation effect of the model on local edges and details. In the decoder, shallow and deep features are fused to output accurate segmentation results.Taking the apple leaf disease segmentation task in the real scene as an example, the segmentation effect of the MixSeg is verified. The experimental results show that MixSeg has the best segmentation effect and the lowest parameters and floating point operations compared with the mainstream semantic segmentation methods on small datasets. On apple alternaria blotch and apple grey spot leaf image datasets, the most lightweight MixSeg-T achieves 98.22%, 98.09% intersection over union for leaf segmentation and 87.40%, 86.20% intersection over union for disease segmentation.Thus, the performance of MixSeg demonstrates that it can provide a more efficient and stable method for accurate segmentation of leaves and diseases in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助窝窝采纳,获得10
1秒前
1秒前
1秒前
文艺书芹完成签到,获得积分10
1秒前
1秒前
多来米发布了新的文献求助10
2秒前
小丑鱼儿完成签到 ,获得积分10
2秒前
打打应助淡然觅海采纳,获得10
5秒前
6秒前
开放菀发布了新的文献求助10
7秒前
caiqinghua888888完成签到,获得积分10
7秒前
三太子发布了新的文献求助10
8秒前
9秒前
摆不平完成签到,获得积分20
11秒前
12秒前
liuxiaoying完成签到,获得积分10
13秒前
今后应助典雅凌蝶采纳,获得10
17秒前
橘子养乐多关注了科研通微信公众号
17秒前
今后应助独特的易形采纳,获得10
17秒前
18秒前
19秒前
沉默的无施完成签到,获得积分10
22秒前
23秒前
orixero应助重要半兰采纳,获得10
23秒前
24秒前
sakiko发布了新的文献求助10
26秒前
务实的映菡完成签到,获得积分10
31秒前
32秒前
Z1070741749完成签到,获得积分10
34秒前
wanci应助彼得大帝采纳,获得10
35秒前
Tristan发布了新的文献求助10
36秒前
37秒前
38秒前
jbh完成签到,获得积分10
40秒前
思源应助xxx采纳,获得10
42秒前
重要半兰发布了新的文献求助10
42秒前
大模型应助POPO采纳,获得10
43秒前
44秒前
翁沛山完成签到 ,获得积分10
45秒前
46秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329457
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594359
捐赠科研通 2637590
什么是DOI,文献DOI怎么找? 1443651
科研通“疑难数据库(出版商)”最低求助积分说明 668775
邀请新用户注册赠送积分活动 656220