清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Virtual sample generation empowers machine learning-based effluent prediction in constructed wetlands

均方误差 粒子群优化 计算机科学 极限学习机 机器学习 随机森林 支持向量机 样本量测定 人工智能 降维 数据挖掘 统计 数学 人工神经网络
作者
Qiyu Dong,Shunwen Bai,Zhen Wang,Xinyue Zhao,Shan-Shan Yang,Nanqi Ren
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:346: 118961-118961 被引量:10
标识
DOI:10.1016/j.jenvman.2023.118961
摘要

The design of constructed wetlands (CWs) is critical to ensure effective wastewater treatment. However, limited availability of reliable data can hamper the accuracy of CW effluent predictions, thus increasing design costs and time. In this study, a novel effluent prediction framework for CWs is proposed, utilizing data dimensionality reduction and virtual sample generation. By using four the machine learning algorithms (Cubist, random forest, support vector regression, and extreme learning machine), important features of CW design are identified and used to build prediction models. The extreme learning machine algorithm achieved the highest determination coefficient and lowest error, identifying it as the most suitable algorithm for effluent prediction. A multi-distribution mega-trend-diffusion algorithm with particle swarm optimization was employed to generate virtual samples. These virtual samples were then combined with real samples to retrain the prediction model and verify the optimization effect. Comparative analysis demonstrated that the integration of virtual samples significantly improved the prediction accuracy for ammonium and chemical oxygen demand. The root mean square error decreased by averages of 60.5% and 42.1%, respectively, and the mean absolute percentage error by averages of 21.5% and 23.8%, respectively. Finally, a CW design process is proposed based on prediction models and virtual samples. This integrated forward prediction and reverse design tool can efficiently support CW design when sample sizes are limited, ultimately leading to more accurate and cost-effective design solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
HOPKINSON发布了新的文献求助10
11秒前
wyh295352318完成签到 ,获得积分10
12秒前
HOPKINSON完成签到,获得积分20
18秒前
小灰灰完成签到 ,获得积分10
23秒前
爱学习的婷完成签到 ,获得积分10
31秒前
陈月婷完成签到 ,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
imi完成签到 ,获得积分0
1分钟前
mm完成签到,获得积分10
1分钟前
kuyi完成签到 ,获得积分10
2分钟前
Guo完成签到 ,获得积分10
2分钟前
mengli完成签到 ,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
彩色的芷容完成签到 ,获得积分10
4分钟前
叶YE发布了新的文献求助30
4分钟前
科目三应助叶YE采纳,获得10
4分钟前
重要铃铛完成签到 ,获得积分10
5分钟前
叶YE完成签到,获得积分10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671300
求助须知:如何正确求助?哪些是违规求助? 3228149
关于积分的说明 9778643
捐赠科研通 2938406
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736003