A Sensor-Fusion Method for Motion Artifacts Reduction in Intraoral EEG Signals

计算机视觉 人工智能 传感器融合 融合 还原(数学) 计算机科学 脑电图 运动(物理) 数学 医学 哲学 语言学 几何学 精神科
作者
Shibam Debbarma,Sharmistha Bhadra
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (19): 23545-23557 被引量:1
标识
DOI:10.1109/jsen.2023.3306311
摘要

In recent studies, electroencephalogram (EEG) signals are acquired intraorally from the palate region. However, intraoral EEG study is a less explored research area and its challenges are yet to be investigated. In this study, we look into the possibility of studying EEG signals from various intraoral locations and investigate the sources of motion artifacts during intraoral EEG measurements. Later, we propose a sensor fusion of EEG electrodes and accelerometer module to monitor intraoral EEG signal and intraoral motions simultaneously. The EEG electrodes, accelerometer, and sensor read-out circuitry are integrated with a mandibular advancement device (MAD). The system is battery-operated and uses a Bluetooth 5.0 transceiver to send data wirelessly. The smart MAD is used to acquire intraoral EEG and accelerometer data and a MATLAB-based algorithm is implemented using empirical mode decomposition (EMD) and independent component analysis (ICA) to decompose the EEG signal components. The decomposed ICA components containing intraoral motion artifacts are then mapped with the motion events extracted from the accelerometer data to identify the motion-corrupted data segments. The ICA components containing intraoral motions are then denoised by nullifying the motion-corrupted data segments. A motion artifact reduced intraoral EEG is reconstructed from the denoised ICA components. The efficacy of the sensor fusion and the proposed algorithm are demonstrated by quantifying the signal-to-noise ratio (SNR) difference and percentage artifacts reduction based on correlation analysis from the EEG signals before and after motion artifacts reduction. Later, the processed intraoral EEG signals are also analyzed for the detection of ‘eye open’ and ‘eye close’ activities in the presence of intraoral motions. The device along with the algorithm will have potential applications for motion artifact-free intraoral EEG monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Akim应助眼睛大的金鱼采纳,获得10
1秒前
1秒前
1秒前
2秒前
legend完成签到,获得积分10
2秒前
猪猪hero发布了新的文献求助10
2秒前
善学以致用应助Scidog采纳,获得10
2秒前
白泽完成签到 ,获得积分10
3秒前
我是老大应助乐乱采纳,获得10
3秒前
张宁波完成签到,获得积分10
3秒前
酷波er应助www采纳,获得10
3秒前
XXF发布了新的文献求助10
4秒前
赤邪发布了新的文献求助10
4秒前
石头发布了新的文献求助10
4秒前
5秒前
Ricky完成签到,获得积分10
5秒前
上官若男应助luuuuuu采纳,获得10
5秒前
杨永亮完成签到,获得积分10
6秒前
6秒前
袁粪到了完成签到 ,获得积分10
6秒前
6秒前
异烟肼完成签到 ,获得积分10
6秒前
Jenny应助通~采纳,获得10
6秒前
yory完成签到 ,获得积分10
7秒前
7秒前
远航完成签到 ,获得积分10
7秒前
7秒前
彭于晏应助Rrr采纳,获得10
7秒前
卓然发布了新的文献求助10
7秒前
精明的中蓝完成签到,获得积分10
8秒前
66应助小钻风采纳,获得10
8秒前
8秒前
领导范儿应助星星采纳,获得10
9秒前
汉堡包应助shotgod采纳,获得10
9秒前
如寄完成签到 ,获得积分10
9秒前
顾闭月发布了新的文献求助10
10秒前
研友_VZG7GZ应助石头采纳,获得10
10秒前
有益发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794