已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Sensor-Fusion Method for Motion Artifacts Reduction in Intraoral EEG Signals

计算机视觉 人工智能 传感器融合 融合 还原(数学) 计算机科学 脑电图 运动(物理) 数学 医学 哲学 语言学 几何学 精神科
作者
Shibam Debbarma,Sharmistha Bhadra
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (19): 23545-23557 被引量:1
标识
DOI:10.1109/jsen.2023.3306311
摘要

In recent studies, electroencephalogram (EEG) signals are acquired intraorally from the palate region. However, intraoral EEG study is a less explored research area and its challenges are yet to be investigated. In this study, we look into the possibility of studying EEG signals from various intraoral locations and investigate the sources of motion artifacts during intraoral EEG measurements. Later, we propose a sensor fusion of EEG electrodes and accelerometer module to monitor intraoral EEG signal and intraoral motions simultaneously. The EEG electrodes, accelerometer, and sensor read-out circuitry are integrated with a mandibular advancement device (MAD). The system is battery-operated and uses a Bluetooth 5.0 transceiver to send data wirelessly. The smart MAD is used to acquire intraoral EEG and accelerometer data and a MATLAB-based algorithm is implemented using empirical mode decomposition (EMD) and independent component analysis (ICA) to decompose the EEG signal components. The decomposed ICA components containing intraoral motion artifacts are then mapped with the motion events extracted from the accelerometer data to identify the motion-corrupted data segments. The ICA components containing intraoral motions are then denoised by nullifying the motion-corrupted data segments. A motion artifact reduced intraoral EEG is reconstructed from the denoised ICA components. The efficacy of the sensor fusion and the proposed algorithm are demonstrated by quantifying the signal-to-noise ratio (SNR) difference and percentage artifacts reduction based on correlation analysis from the EEG signals before and after motion artifacts reduction. Later, the processed intraoral EEG signals are also analyzed for the detection of ‘eye open’ and ‘eye close’ activities in the presence of intraoral motions. The device along with the algorithm will have potential applications for motion artifact-free intraoral EEG monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Keu完成签到,获得积分10
5秒前
mmmwwwx发布了新的文献求助50
8秒前
511完成签到 ,获得积分10
12秒前
缓慢的初南完成签到,获得积分20
17秒前
领导范儿应助木深采纳,获得10
18秒前
Hobby完成签到,获得积分0
19秒前
阳光完成签到,获得积分10
20秒前
daydayup完成签到,获得积分10
21秒前
研友_ZbM2qn应助mbf采纳,获得30
23秒前
陈塘关守将完成签到,获得积分10
26秒前
小曹在医院上晚班完成签到,获得积分10
27秒前
程小柒完成签到 ,获得积分10
32秒前
33秒前
清风完成签到 ,获得积分10
33秒前
33秒前
虚幻豌豆发布了新的文献求助10
34秒前
阿鑫完成签到 ,获得积分10
35秒前
王天天完成签到 ,获得积分10
35秒前
六六完成签到,获得积分10
36秒前
37秒前
39秒前
40秒前
40秒前
代扁扁完成签到 ,获得积分10
42秒前
852应助mmmwwwx采纳,获得10
43秒前
六六发布了新的文献求助10
44秒前
youngyang完成签到 ,获得积分10
45秒前
木深发布了新的文献求助10
45秒前
吕lvlvlvlvlv完成签到 ,获得积分10
46秒前
子春完成签到 ,获得积分10
46秒前
8R60d8应助lulu采纳,获得10
47秒前
照桥心美完成签到,获得积分10
53秒前
小蘑菇应助Nana采纳,获得10
55秒前
年轻冰萍完成签到,获得积分10
55秒前
照桥心美发布了新的文献求助10
58秒前
58秒前
妮妮完成签到,获得积分10
59秒前
59秒前
1分钟前
范白容完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499935
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428778
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382