已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rejection methods for vegetation mapping using hyperspectral airborne data

高光谱成像 支持向量机 随机森林 计算机科学 植被(病理学) 先验与后验 人工智能 植被分类 阈值 遥感 最大后验估计 模式识别(心理学) 机器学习 数学 地理 统计 图像(数学) 医学 最大似然 哲学 认识论 病理
作者
Rollin Gimenez,Alice Laloue,Sophie Fabre
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (16): 4937-4962
标识
DOI:10.1080/01431161.2023.2240520
摘要

Vegetation mapping from remote sensing data has proven useful for monitoring ecosystems at local, regional and global scales. Generally based on supervised classification methods, ecosystem mapping needs representative and consistent labelling. Such completeness is often difficult to achieve and requires the exclusion of minority species poorly represented in the studied scene in the training base. This exclusion leads to wrong predictions in the resulting map. In this study, the use of a posteriori classification rejection methods to limit the errors associated with minority species was evaluated in three different mapping scenarios: classification according to vegetation layers, prediction of genera from various vegetation types from low vegetation to trees and mapping of habitat (assemblages of species). For this purpose, several supervised classification methods based on Support Vector Machines (SVM), Random Forests (RF) and Regularized Logistic Regression (RLR) algorithms were first applied to hyperspectral images covering the reflective domain. On these classifications, the usual evaluation methods (confusion matrix and its derivatives calculated on an independent test set composed of the majority species) showed performances similar to those of the state-of-the-art. However, the introduction of a new score taking into account minority species demonstrated the need to include them in the evaluation process to provide robust performance quantification representing map effectiveness. Three a posteriori rejection methods, based on simple thresholding, K-means and SVM algorithms, were well suited to monitor minority species. The performance gain depended on the mapping scenario, the machine learning model and the rejection method. An increase in performance with the inclusion of minority species of up to 12% could be observed through the new score. These methods also detected a similar proportion of prediction errors associated with predominant species
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmmgc完成签到,获得积分10
1秒前
LeeM发布了新的文献求助10
1秒前
haer完成签到,获得积分10
1秒前
竹子关注了科研通微信公众号
1秒前
2秒前
xaq发布了新的文献求助10
2秒前
4秒前
111发布了新的文献求助30
4秒前
Velpro发布了新的文献求助10
4秒前
4秒前
大个应助琥珀主采纳,获得10
5秒前
沅沅发布了新的文献求助10
7秒前
茶茶发布了新的文献求助10
9秒前
9秒前
丸子完成签到,获得积分10
12秒前
Milo完成签到,获得积分10
13秒前
bluelemon完成签到,获得积分10
14秒前
15秒前
大开特开发布了新的文献求助10
16秒前
16秒前
vividkingking完成签到 ,获得积分10
17秒前
17秒前
18秒前
竹子发布了新的文献求助10
19秒前
20秒前
20秒前
琥珀主发布了新的文献求助10
21秒前
ysw979发布了新的文献求助10
22秒前
23秒前
顾矜应助LeeM采纳,获得10
24秒前
医学小王发布了新的文献求助10
24秒前
科研通AI5应助Velpro采纳,获得10
24秒前
顾矜应助阔达初南采纳,获得10
24秒前
鹿小九完成签到,获得积分20
25秒前
26秒前
归尘发布了新的文献求助10
27秒前
凉白开完成签到,获得积分10
27秒前
28秒前
張医铄完成签到,获得积分10
29秒前
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477327
求助须知:如何正确求助?哪些是违规求助? 3068732
关于积分的说明 9109499
捐赠科研通 2760254
什么是DOI,文献DOI怎么找? 1514752
邀请新用户注册赠送积分活动 700448
科研通“疑难数据库(出版商)”最低求助积分说明 699529