惯性测量装置
计算机科学
人工智能
计算机视觉
运动(物理)
翻译(生物学)
接头(建筑物)
职位(财务)
惯性参考系
任务(项目管理)
运动捕捉
旋转(数学)
工程类
基因
信使核糖核酸
物理
量子力学
经济
建筑工程
生物化学
化学
系统工程
财务
作者
Dexin Xu,Zhaohua Wang,Xiaowei Zhu
标识
DOI:10.1109/icma57826.2023.10215889
摘要
This paper proposes a deep learning method using six sparse IMU inertial measurement units to realize body motion capture. It identifies the pattern of body posture task into multiple sub-tasks, estimates the whole body joint position from the blade joint position, and finally returns the rotation information of the whole joint to realize human posture recognition. For global translation tasks, RNN network fusion method are adopted to achieve better global translation effect. The method adopted in this paper compares the traditional visual method, and is not limited by space and funding. It can be captured through sparse IMU elements, and can achieve better results.
科研通智能强力驱动
Strongly Powered by AbleSci AI