清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An intelligent strategy for phase change heat and mass transfer: Application of machine learning

计算机科学 人工智能 机器学习 领域(数学) 表征(材料科学) 传热 概化理论 相(物质) 纳米技术 材料科学 物理 数学 纯数学 热力学 统计 化学 有机化学
作者
Siavash Khodakarami,Youngjoon Suh,Yoonjin Won,Nenad Miljkovic
出处
期刊:Advances in heat transfer 卷期号:: 113-168 被引量:4
标识
DOI:10.1016/bs.aiht.2023.05.002
摘要

Reliable and cost-effective measurement and characterization of phase change processes have always been challenging and expensive. Likewise, due to the complex nature of these processes, the fundamental understanding of processes such as boiling and condensation remains limited. Therefore, a need exists in the phase change heat and mass transfer research community to develop new techniques which can achieve both more accurate and simpler heat transfer measurements. Furthermore, a need exists to develop a better understanding of the relevant physical mechanisms governing these processes. Conventional methods for measuring and characterizing phase change heat transfer are often complex and lead to high measurement uncertainty, and their use is limited to narrow conditions. However, in the past decade, the field of engineering has seen a surge in the application of machine learning and computer vision techniques in various areas such as material science, biomedical, manufacturing, and autonomous driving. Recently, these techniques have shown promising results in the field of thermofluidic sciences. This chapter aims to review traditional phase change heat transfer measurement and characterization methods, highlighting their challenges and limitations. Furthermore, we discuss the potential of machine learning and computer vision models in phase change processes including their generalizability, and cost of the machine learning models compared to conventional methods. This chapter is intended to provide a strong argument for the need for new characterization techniques in phase change processes and why machine learning has the potential to augment or replace other methods. We also hope that this chapter is informative for those seeking to apply machine learning in the domain of phase change heat and mass transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
法外潮湿宝贝完成签到 ,获得积分10
5秒前
分析完成签到 ,获得积分10
9秒前
Hello应助冷傲半邪采纳,获得30
21秒前
冷傲半邪完成签到,获得积分10
36秒前
fishss完成签到 ,获得积分10
43秒前
51秒前
斯文败类应助张静怡采纳,获得10
56秒前
1分钟前
张静怡发布了新的文献求助10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
123完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
沈惠映完成签到 ,获得积分10
2分钟前
allrubbish完成签到,获得积分10
2分钟前
自然的含蕾完成签到 ,获得积分10
2分钟前
柠檬西米露完成签到,获得积分10
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
ric发布了新的文献求助10
3分钟前
ric完成签到,获得积分10
4分钟前
4分钟前
沉沉完成签到 ,获得积分0
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
田様应助科研通管家采纳,获得10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
饿哭了塞完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
dcm发布了新的文献求助10
6分钟前
月儿完成签到 ,获得积分10
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
6分钟前
Hello应助dcm采纳,获得10
7分钟前
MchemG应助科研通管家采纳,获得50
7分钟前
7分钟前
dcm发布了新的文献求助10
7分钟前
科研通AI6应助PeterLin采纳,获得10
7分钟前
激动的似狮完成签到,获得积分10
7分钟前
7分钟前
我是大兴发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612299
求助须知:如何正确求助?哪些是违规求助? 4017533
关于积分的说明 12436470
捐赠科研通 3699644
什么是DOI,文献DOI怎么找? 2040234
邀请新用户注册赠送积分活动 1073074
科研通“疑难数据库(出版商)”最低求助积分说明 956780