清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An intelligent strategy for phase change heat and mass transfer: Application of machine learning

计算机科学 人工智能 机器学习 领域(数学) 表征(材料科学) 传热 概化理论 相(物质) 纳米技术 材料科学 物理 数学 纯数学 热力学 统计 化学 有机化学
作者
Siavash Khodakarami,Youngjoon Suh,Yoonjin Won,Nenad Miljkovic
出处
期刊:Advances in heat transfer 卷期号:: 113-168 被引量:1
标识
DOI:10.1016/bs.aiht.2023.05.002
摘要

Reliable and cost-effective measurement and characterization of phase change processes have always been challenging and expensive. Likewise, due to the complex nature of these processes, the fundamental understanding of processes such as boiling and condensation remains limited. Therefore, a need exists in the phase change heat and mass transfer research community to develop new techniques which can achieve both more accurate and simpler heat transfer measurements. Furthermore, a need exists to develop a better understanding of the relevant physical mechanisms governing these processes. Conventional methods for measuring and characterizing phase change heat transfer are often complex and lead to high measurement uncertainty, and their use is limited to narrow conditions. However, in the past decade, the field of engineering has seen a surge in the application of machine learning and computer vision techniques in various areas such as material science, biomedical, manufacturing, and autonomous driving. Recently, these techniques have shown promising results in the field of thermofluidic sciences. This chapter aims to review traditional phase change heat transfer measurement and characterization methods, highlighting their challenges and limitations. Furthermore, we discuss the potential of machine learning and computer vision models in phase change processes including their generalizability, and cost of the machine learning models compared to conventional methods. This chapter is intended to provide a strong argument for the need for new characterization techniques in phase change processes and why machine learning has the potential to augment or replace other methods. We also hope that this chapter is informative for those seeking to apply machine learning in the domain of phase change heat and mass transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FloppyWow完成签到 ,获得积分10
3秒前
znchick发布了新的文献求助10
9秒前
znchick完成签到,获得积分10
19秒前
郑洲完成签到 ,获得积分10
28秒前
xun完成签到,获得积分20
49秒前
iedq完成签到 ,获得积分10
1分钟前
葫芦芦芦完成签到 ,获得积分10
1分钟前
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
空洛完成签到 ,获得积分10
2分钟前
2分钟前
zzgpku完成签到,获得积分0
2分钟前
zhdjj完成签到 ,获得积分10
2分钟前
TAO LEE完成签到 ,获得积分0
2分钟前
2分钟前
稳重傲晴完成签到 ,获得积分10
2分钟前
端庄千青发布了新的文献求助10
3分钟前
bkagyin应助sky采纳,获得10
3分钟前
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
研友_08oa3n完成签到 ,获得积分10
3分钟前
3分钟前
科研狗完成签到 ,获得积分10
3分钟前
Archers完成签到 ,获得积分10
3分钟前
sky发布了新的文献求助10
3分钟前
NexusExplorer应助sky采纳,获得10
3分钟前
然而。完成签到 ,获得积分10
3分钟前
wj完成签到 ,获得积分10
3分钟前
peili完成签到,获得积分0
4分钟前
沉沉完成签到 ,获得积分0
4分钟前
PanzerV发布了新的文献求助10
4分钟前
Daisy完成签到,获得积分10
5分钟前
wx1完成签到 ,获得积分0
5分钟前
foyefeng完成签到,获得积分10
5分钟前
weijie完成签到,获得积分10
5分钟前
和谐的夏岚完成签到 ,获得积分10
5分钟前
drhwang关注了科研通微信公众号
5分钟前
haralee完成签到 ,获得积分10
5分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484484
求助须知:如何正确求助?哪些是违规求助? 3073483
关于积分的说明 9131089
捐赠科研通 2765140
什么是DOI,文献DOI怎么找? 1517646
邀请新用户注册赠送积分活动 702204
科研通“疑难数据库(出版商)”最低求助积分说明 701166