An intelligent strategy for phase change heat and mass transfer: Application of machine learning

计算机科学 人工智能 机器学习 领域(数学) 表征(材料科学) 传热 概化理论 相(物质) 纳米技术 材料科学 热力学 统计 物理 数学 有机化学 化学 纯数学
作者
Siavash Khodakarami,Youngjoon Suh,Yoonjin Won,Nenad Miljkovic
出处
期刊:Advances in heat transfer 卷期号:: 113-168 被引量:4
标识
DOI:10.1016/bs.aiht.2023.05.002
摘要

Reliable and cost-effective measurement and characterization of phase change processes have always been challenging and expensive. Likewise, due to the complex nature of these processes, the fundamental understanding of processes such as boiling and condensation remains limited. Therefore, a need exists in the phase change heat and mass transfer research community to develop new techniques which can achieve both more accurate and simpler heat transfer measurements. Furthermore, a need exists to develop a better understanding of the relevant physical mechanisms governing these processes. Conventional methods for measuring and characterizing phase change heat transfer are often complex and lead to high measurement uncertainty, and their use is limited to narrow conditions. However, in the past decade, the field of engineering has seen a surge in the application of machine learning and computer vision techniques in various areas such as material science, biomedical, manufacturing, and autonomous driving. Recently, these techniques have shown promising results in the field of thermofluidic sciences. This chapter aims to review traditional phase change heat transfer measurement and characterization methods, highlighting their challenges and limitations. Furthermore, we discuss the potential of machine learning and computer vision models in phase change processes including their generalizability, and cost of the machine learning models compared to conventional methods. This chapter is intended to provide a strong argument for the need for new characterization techniques in phase change processes and why machine learning has the potential to augment or replace other methods. We also hope that this chapter is informative for those seeking to apply machine learning in the domain of phase change heat and mass transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助开心一笑采纳,获得10
刚刚
领导范儿应助zpl采纳,获得10
刚刚
fengyun1990完成签到,获得积分10
1秒前
直率的惜寒完成签到,获得积分10
1秒前
1351567822应助69qq采纳,获得30
1秒前
1秒前
斯文败类应助巫雍采纳,获得10
2秒前
jy完成签到,获得积分10
2秒前
张艳坤完成签到,获得积分10
3秒前
3秒前
隐形白开水完成签到,获得积分10
3秒前
沿岸有贝壳完成签到,获得积分10
4秒前
5秒前
无颜猪完成签到,获得积分10
5秒前
oxygen253发布了新的文献求助10
5秒前
6秒前
6秒前
zcm完成签到,获得积分10
6秒前
李爱国应助小景007采纳,获得10
6秒前
研友_VZG7GZ应助Zosty采纳,获得10
7秒前
妮娜a完成签到,获得积分20
7秒前
8秒前
ATOM发布了新的文献求助10
8秒前
咯哦发布了新的文献求助10
8秒前
9秒前
疯狂的发卡完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
小尬尬发布了新的文献求助10
11秒前
11秒前
所所应助oxygen253采纳,获得10
11秒前
小二郎应助歪瑞古德采纳,获得10
12秒前
研友_VZG7GZ应助丰富的不惜采纳,获得10
12秒前
蜡笔小星发布了新的文献求助10
13秒前
13秒前
13秒前
orixero应助Li656943234采纳,获得10
13秒前
14秒前
薛定谔的猫完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351102
求助须知:如何正确求助?哪些是违规求助? 4484300
关于积分的说明 13958609
捐赠科研通 4383746
什么是DOI,文献DOI怎么找? 2408614
邀请新用户注册赠送积分活动 1401199
关于科研通互助平台的介绍 1374670