Learning feature fusion via an interpretation method for tumor segmentation on PET/CT

分割 计算机科学 可解释性 模态(人机交互) 口译(哲学) 人工智能 特征(语言学) 模式 可视化 模式识别(心理学) 机器学习 社会科学 哲学 语言学 社会学 程序设计语言
作者
Susu Kang,Zhiyuan Chen,Laquan Li,Wei Lü,X. Qi,Shan Tan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110825-110825 被引量:4
标识
DOI:10.1016/j.asoc.2023.110825
摘要

Accurate tumor segmentation of multi-modality PET/CT images plays a vital role in computer-aided cancer diagnosis and treatment. It is crucial to rationally fuse the complementary information in multi-modality PET/CT segmentation. However, existing methods usually lack interpretability and fail to sufficiently identify and aggregate critical information from different modalities. In this study, we proposed a novel segmentation framework that incorporated an interpretation module into the multi-modality segmentation backbone. The interpretation module highlighted critical features from each modality based on their contributions to the segmentation performance. To provide explicit supervision for the interpretation module, we introduced a novel interpretation loss with two fusion schemes: strengthened fusion and perturbed fusion. The interpretation loss guided the interpretation module to focus on informative features, enhancing its effectiveness in generating meaningful interpretable masks. Under the guidance of the interpretation module, the proposed approach can fully exploit meaningful features from each modality, leading to better integration of multi-modality information and improved segmentation performance. Ablative and comparative experiments were conducted on two PET/CT tumor segmentation datasets. The proposed approach surpassed the baseline by 1.4 and 1.8 Dices on two datasets, respectively, indicating the improvement achieved by the interpretation method. Furthermore, the proposed approach outperformed the best comparison approach by 0.9 and 0.6 Dices on two datasets, respectively. In addition, visualization and perturbation experiments further illustrated the effectiveness of the interpretation method in highlighting critical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然丹蝶发布了新的文献求助10
刚刚
刚刚
ken5488完成签到,获得积分10
2秒前
sherrywuxh发布了新的文献求助10
2秒前
Oooner发布了新的文献求助10
3秒前
4秒前
Akim应助学术脑袋采纳,获得10
5秒前
慕青应助lyh采纳,获得10
5秒前
5秒前
生动电脑发布了新的文献求助30
5秒前
嘎哈完成签到 ,获得积分10
7秒前
李健的小迷弟应助better采纳,获得10
10秒前
mostspecial完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
隐形曼青应助sherrywuxh采纳,获得10
13秒前
13秒前
15秒前
伶俐盼海发布了新的文献求助10
15秒前
红豆大王完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
Patrick0614发布了新的文献求助10
17秒前
18秒前
18秒前
学术脑袋发布了新的文献求助10
18秒前
顾矜应助优美紫槐采纳,获得10
19秒前
19秒前
Akim应助嘎哈采纳,获得10
20秒前
21秒前
23秒前
LIhao发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
丰富以亦完成签到,获得积分10
25秒前
25秒前
yolo完成签到,获得积分10
25秒前
better发布了新的文献求助10
26秒前
26秒前
27秒前
伯赏盼晴发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513