清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning feature fusion via an interpretation method for tumor segmentation on PET/CT

分割 计算机科学 可解释性 模态(人机交互) 口译(哲学) 人工智能 特征(语言学) 模式 可视化 模式识别(心理学) 机器学习 社会科学 哲学 语言学 社会学 程序设计语言
作者
Susu Kang,Zhiyuan Chen,Laquan Li,Wei Lü,X. Qi,Shan Tan
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:148: 110825-110825 被引量:4
标识
DOI:10.1016/j.asoc.2023.110825
摘要

Accurate tumor segmentation of multi-modality PET/CT images plays a vital role in computer-aided cancer diagnosis and treatment. It is crucial to rationally fuse the complementary information in multi-modality PET/CT segmentation. However, existing methods usually lack interpretability and fail to sufficiently identify and aggregate critical information from different modalities. In this study, we proposed a novel segmentation framework that incorporated an interpretation module into the multi-modality segmentation backbone. The interpretation module highlighted critical features from each modality based on their contributions to the segmentation performance. To provide explicit supervision for the interpretation module, we introduced a novel interpretation loss with two fusion schemes: strengthened fusion and perturbed fusion. The interpretation loss guided the interpretation module to focus on informative features, enhancing its effectiveness in generating meaningful interpretable masks. Under the guidance of the interpretation module, the proposed approach can fully exploit meaningful features from each modality, leading to better integration of multi-modality information and improved segmentation performance. Ablative and comparative experiments were conducted on two PET/CT tumor segmentation datasets. The proposed approach surpassed the baseline by 1.4 and 1.8 Dices on two datasets, respectively, indicating the improvement achieved by the interpretation method. Furthermore, the proposed approach outperformed the best comparison approach by 0.9 and 0.6 Dices on two datasets, respectively. In addition, visualization and perturbation experiments further illustrated the effectiveness of the interpretation method in highlighting critical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷平凡完成签到,获得积分10
19秒前
荔枝发布了新的文献求助10
53秒前
59秒前
连安阳完成签到,获得积分10
1分钟前
2分钟前
荔枝发布了新的文献求助10
2分钟前
丁老三完成签到 ,获得积分10
2分钟前
2分钟前
Jim发布了新的文献求助10
3分钟前
3分钟前
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
Unlisted发布了新的文献求助10
3分钟前
落寞的又菡完成签到,获得积分10
3分钟前
4分钟前
端庄洪纲完成签到 ,获得积分10
4分钟前
5分钟前
米修发布了新的文献求助10
5分钟前
5分钟前
米修完成签到,获得积分20
5分钟前
CodeCraft应助居家小可采纳,获得10
5分钟前
6分钟前
苗苗发布了新的文献求助10
6分钟前
6分钟前
苗苗完成签到 ,获得积分10
6分钟前
loathebm发布了新的文献求助10
6分钟前
NexusExplorer应助loathebm采纳,获得10
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
7分钟前
7分钟前
居家小可发布了新的文献求助10
7分钟前
我睡觉的时候不困完成签到 ,获得积分10
7分钟前
居家小可完成签到,获得积分10
7分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
7分钟前
如歌完成签到,获得积分10
8分钟前
不羁之魂完成签到,获得积分10
8分钟前
8分钟前
9分钟前
飞快的孱发布了新的文献求助10
9分钟前
CYT完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108