Learning feature fusion via an interpretation method for tumor segmentation on PET/CT

分割 计算机科学 可解释性 模态(人机交互) 口译(哲学) 人工智能 特征(语言学) 模式 可视化 模式识别(心理学) 机器学习 社会科学 哲学 语言学 社会学 程序设计语言
作者
Susu Kang,Zhiyuan Chen,Laquan Li,Wei Lü,X. Qi,Shan Tan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110825-110825 被引量:4
标识
DOI:10.1016/j.asoc.2023.110825
摘要

Accurate tumor segmentation of multi-modality PET/CT images plays a vital role in computer-aided cancer diagnosis and treatment. It is crucial to rationally fuse the complementary information in multi-modality PET/CT segmentation. However, existing methods usually lack interpretability and fail to sufficiently identify and aggregate critical information from different modalities. In this study, we proposed a novel segmentation framework that incorporated an interpretation module into the multi-modality segmentation backbone. The interpretation module highlighted critical features from each modality based on their contributions to the segmentation performance. To provide explicit supervision for the interpretation module, we introduced a novel interpretation loss with two fusion schemes: strengthened fusion and perturbed fusion. The interpretation loss guided the interpretation module to focus on informative features, enhancing its effectiveness in generating meaningful interpretable masks. Under the guidance of the interpretation module, the proposed approach can fully exploit meaningful features from each modality, leading to better integration of multi-modality information and improved segmentation performance. Ablative and comparative experiments were conducted on two PET/CT tumor segmentation datasets. The proposed approach surpassed the baseline by 1.4 and 1.8 Dices on two datasets, respectively, indicating the improvement achieved by the interpretation method. Furthermore, the proposed approach outperformed the best comparison approach by 0.9 and 0.6 Dices on two datasets, respectively. In addition, visualization and perturbation experiments further illustrated the effectiveness of the interpretation method in highlighting critical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助bdvdsrwteges采纳,获得10
2秒前
木木雨发布了新的文献求助10
3秒前
鬲木发布了新的文献求助10
3秒前
mao12wang发布了新的文献求助10
3秒前
L坨坨完成签到 ,获得积分10
3秒前
耿强发布了新的文献求助10
3秒前
jmy发布了新的文献求助10
4秒前
科研小黑子完成签到,获得积分20
4秒前
4秒前
苏尔完成签到,获得积分10
4秒前
4秒前
浅墨完成签到 ,获得积分10
4秒前
mony完成签到,获得积分10
4秒前
5秒前
5秒前
huizi发布了新的文献求助10
5秒前
6秒前
菠萝冰棒发布了新的文献求助10
6秒前
6秒前
请叫我风吹麦浪完成签到,获得积分0
6秒前
清爽雪枫发布了新的文献求助10
7秒前
7秒前
7秒前
李健应助斜杠武采纳,获得10
8秒前
fengxj完成签到 ,获得积分10
8秒前
8秒前
8秒前
七七给七七的求助进行了留言
8秒前
9秒前
9秒前
Hello应助冷静的平安采纳,获得10
9秒前
FKVB_完成签到 ,获得积分10
10秒前
饼饼完成签到,获得积分10
10秒前
天天快乐应助木木采纳,获得10
10秒前
艺玲发布了新的文献求助10
10秒前
大气飞丹发布了新的文献求助10
10秒前
丫丫完成签到,获得积分10
11秒前
科研通AI2S应助觅桃乌龙采纳,获得10
11秒前
耿强完成签到,获得积分10
11秒前
wanci应助dd采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759