Learning feature fusion via an interpretation method for tumor segmentation on PET/CT

分割 计算机科学 可解释性 模态(人机交互) 口译(哲学) 人工智能 特征(语言学) 模式 可视化 模式识别(心理学) 机器学习 社会科学 哲学 语言学 社会学 程序设计语言
作者
Susu Kang,Zhiyuan Chen,Laquan Li,Wei Lü,X. Qi,Shan Tan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110825-110825 被引量:4
标识
DOI:10.1016/j.asoc.2023.110825
摘要

Accurate tumor segmentation of multi-modality PET/CT images plays a vital role in computer-aided cancer diagnosis and treatment. It is crucial to rationally fuse the complementary information in multi-modality PET/CT segmentation. However, existing methods usually lack interpretability and fail to sufficiently identify and aggregate critical information from different modalities. In this study, we proposed a novel segmentation framework that incorporated an interpretation module into the multi-modality segmentation backbone. The interpretation module highlighted critical features from each modality based on their contributions to the segmentation performance. To provide explicit supervision for the interpretation module, we introduced a novel interpretation loss with two fusion schemes: strengthened fusion and perturbed fusion. The interpretation loss guided the interpretation module to focus on informative features, enhancing its effectiveness in generating meaningful interpretable masks. Under the guidance of the interpretation module, the proposed approach can fully exploit meaningful features from each modality, leading to better integration of multi-modality information and improved segmentation performance. Ablative and comparative experiments were conducted on two PET/CT tumor segmentation datasets. The proposed approach surpassed the baseline by 1.4 and 1.8 Dices on two datasets, respectively, indicating the improvement achieved by the interpretation method. Furthermore, the proposed approach outperformed the best comparison approach by 0.9 and 0.6 Dices on two datasets, respectively. In addition, visualization and perturbation experiments further illustrated the effectiveness of the interpretation method in highlighting critical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追风发布了新的文献求助10
刚刚
寻础发布了新的文献求助30
1秒前
量子星尘发布了新的文献求助10
1秒前
阳光听安完成签到,获得积分20
2秒前
L1发布了新的文献求助10
2秒前
2秒前
3秒前
赘婿应助mcs0808采纳,获得10
5秒前
shanyuyulai完成签到 ,获得积分10
5秒前
汉堡包应助zhy采纳,获得10
6秒前
吕嫣娆完成签到 ,获得积分10
6秒前
科研通AI6应助哈哈哈采纳,获得10
6秒前
CipherSage应助司徒绮采纳,获得10
6秒前
琉璃发布了新的文献求助10
7秒前
凶狠的冰棍完成签到,获得积分10
7秒前
8秒前
8秒前
科研通AI6应助黑马王子采纳,获得10
9秒前
10秒前
10秒前
10秒前
11秒前
华仔应助131310采纳,获得30
12秒前
丘比特应助白承恩采纳,获得10
13秒前
周周发布了新的文献求助10
13秒前
13秒前
辞南发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
77完成签到,获得积分10
17秒前
领导范儿应助陶醉的开山采纳,获得10
17秒前
司徒绮发布了新的文献求助10
18秒前
小二郎应助luo采纳,获得10
19秒前
香蕉觅云应助栀紫采纳,获得10
19秒前
欣喜安蕾完成签到,获得积分10
20秒前
77发布了新的文献求助10
20秒前
Zz发布了新的文献求助10
21秒前
科研通AI6应助hahahaha采纳,获得10
21秒前
隐形曼青应助小蘑菇采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265