Learning feature fusion via an interpretation method for tumor segmentation on PET/CT

分割 计算机科学 可解释性 模态(人机交互) 口译(哲学) 人工智能 特征(语言学) 模式 可视化 模式识别(心理学) 机器学习 社会科学 哲学 语言学 社会学 程序设计语言
作者
Susu Kang,Zhiyuan Chen,Laquan Li,Wei Lü,X. Qi,Shan Tan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110825-110825 被引量:4
标识
DOI:10.1016/j.asoc.2023.110825
摘要

Accurate tumor segmentation of multi-modality PET/CT images plays a vital role in computer-aided cancer diagnosis and treatment. It is crucial to rationally fuse the complementary information in multi-modality PET/CT segmentation. However, existing methods usually lack interpretability and fail to sufficiently identify and aggregate critical information from different modalities. In this study, we proposed a novel segmentation framework that incorporated an interpretation module into the multi-modality segmentation backbone. The interpretation module highlighted critical features from each modality based on their contributions to the segmentation performance. To provide explicit supervision for the interpretation module, we introduced a novel interpretation loss with two fusion schemes: strengthened fusion and perturbed fusion. The interpretation loss guided the interpretation module to focus on informative features, enhancing its effectiveness in generating meaningful interpretable masks. Under the guidance of the interpretation module, the proposed approach can fully exploit meaningful features from each modality, leading to better integration of multi-modality information and improved segmentation performance. Ablative and comparative experiments were conducted on two PET/CT tumor segmentation datasets. The proposed approach surpassed the baseline by 1.4 and 1.8 Dices on two datasets, respectively, indicating the improvement achieved by the interpretation method. Furthermore, the proposed approach outperformed the best comparison approach by 0.9 and 0.6 Dices on two datasets, respectively. In addition, visualization and perturbation experiments further illustrated the effectiveness of the interpretation method in highlighting critical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
星辰大海应助zhoudada采纳,获得10
1秒前
B站萧亚轩完成签到,获得积分10
1秒前
1秒前
调皮秋凌发布了新的文献求助10
2秒前
Alex发布了新的文献求助10
2秒前
Rookie完成签到,获得积分10
2秒前
亮亮来咯发布了新的文献求助10
2秒前
深情安青应助小白采纳,获得10
2秒前
xl完成签到,获得积分10
2秒前
3秒前
brave heart完成签到,获得积分10
3秒前
浮游应助留胡子的香寒采纳,获得10
3秒前
星星完成签到,获得积分10
4秒前
Dunley完成签到,获得积分20
4秒前
renin发布了新的文献求助10
5秒前
cp关闭了cp文献求助
5秒前
6秒前
bkagyin应助zy采纳,获得10
7秒前
7秒前
young完成签到,获得积分10
8秒前
8秒前
SCI发发发布了新的文献求助10
8秒前
从光远完成签到 ,获得积分10
8秒前
9秒前
安静的初翠完成签到,获得积分10
9秒前
满意曼荷应助加菲丰丰采纳,获得10
9秒前
可爱的函函应助标致语蝶采纳,获得10
10秒前
星月完成签到,获得积分10
10秒前
酷波er应助HHH采纳,获得10
11秒前
ghost完成签到,获得积分10
11秒前
12秒前
czt完成签到,获得积分10
12秒前
30333发布了新的文献求助10
14秒前
浮游应助留胡子的香寒采纳,获得10
14秒前
15秒前
华仔应助fred采纳,获得30
15秒前
16秒前
啦啦啦啦啦完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5491562
求助须知:如何正确求助?哪些是违规求助? 4590068
关于积分的说明 14428695
捐赠科研通 4522306
什么是DOI,文献DOI怎么找? 2477856
邀请新用户注册赠送积分活动 1462948
关于科研通互助平台的介绍 1435627