亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning feature fusion via an interpretation method for tumor segmentation on PET/CT

分割 计算机科学 可解释性 模态(人机交互) 口译(哲学) 人工智能 特征(语言学) 模式 可视化 模式识别(心理学) 机器学习 社会科学 哲学 语言学 社会学 程序设计语言
作者
Susu Kang,Zhiyuan Chen,Laquan Li,Wei Lü,X. Qi,Shan Tan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110825-110825 被引量:4
标识
DOI:10.1016/j.asoc.2023.110825
摘要

Accurate tumor segmentation of multi-modality PET/CT images plays a vital role in computer-aided cancer diagnosis and treatment. It is crucial to rationally fuse the complementary information in multi-modality PET/CT segmentation. However, existing methods usually lack interpretability and fail to sufficiently identify and aggregate critical information from different modalities. In this study, we proposed a novel segmentation framework that incorporated an interpretation module into the multi-modality segmentation backbone. The interpretation module highlighted critical features from each modality based on their contributions to the segmentation performance. To provide explicit supervision for the interpretation module, we introduced a novel interpretation loss with two fusion schemes: strengthened fusion and perturbed fusion. The interpretation loss guided the interpretation module to focus on informative features, enhancing its effectiveness in generating meaningful interpretable masks. Under the guidance of the interpretation module, the proposed approach can fully exploit meaningful features from each modality, leading to better integration of multi-modality information and improved segmentation performance. Ablative and comparative experiments were conducted on two PET/CT tumor segmentation datasets. The proposed approach surpassed the baseline by 1.4 and 1.8 Dices on two datasets, respectively, indicating the improvement achieved by the interpretation method. Furthermore, the proposed approach outperformed the best comparison approach by 0.9 and 0.6 Dices on two datasets, respectively. In addition, visualization and perturbation experiments further illustrated the effectiveness of the interpretation method in highlighting critical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子发布了新的文献求助30
刚刚
ZXneuro完成签到,获得积分10
1秒前
溪流冲浪发布了新的文献求助20
2秒前
悲凉的忆南完成签到,获得积分10
3秒前
陈旧完成签到,获得积分10
6秒前
黄志伟完成签到,获得积分20
7秒前
欣欣子完成签到,获得积分10
10秒前
sunstar完成签到,获得积分10
13秒前
积极慕晴发布了新的文献求助10
16秒前
16秒前
yxl完成签到,获得积分10
17秒前
Emma发布了新的文献求助10
17秒前
可耐的盈完成签到,获得积分10
20秒前
21秒前
绿毛水怪完成签到,获得积分10
24秒前
guo完成签到 ,获得积分10
26秒前
27秒前
lsc完成签到,获得积分10
28秒前
29秒前
小fei完成签到,获得积分10
35秒前
JamesPei应助如意的沛萍采纳,获得10
41秒前
麻辣薯条完成签到,获得积分10
45秒前
Emma关注了科研通微信公众号
49秒前
时尚身影完成签到,获得积分10
50秒前
51秒前
leoduo完成签到,获得积分0
54秒前
SSY发布了新的文献求助10
56秒前
流苏2完成签到,获得积分10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
toutou应助科研通管家采纳,获得10
1分钟前
toutou应助科研通管家采纳,获得10
1分钟前
帝国之花应助科研通管家采纳,获得10
1分钟前
栗子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
mjjmm发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
aidengu完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772620
求助须知:如何正确求助?哪些是违规求助? 5600468
关于积分的说明 15429844
捐赠科研通 4905555
什么是DOI,文献DOI怎么找? 2639480
邀请新用户注册赠送积分活动 1587379
关于科研通互助平台的介绍 1542312