亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning feature fusion via an interpretation method for tumor segmentation on PET/CT

分割 计算机科学 可解释性 模态(人机交互) 口译(哲学) 人工智能 特征(语言学) 模式 可视化 模式识别(心理学) 机器学习 社会科学 哲学 语言学 社会学 程序设计语言
作者
Susu Kang,Zhiyuan Chen,Laquan Li,Wei Lü,X. Qi,Shan Tan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110825-110825 被引量:4
标识
DOI:10.1016/j.asoc.2023.110825
摘要

Accurate tumor segmentation of multi-modality PET/CT images plays a vital role in computer-aided cancer diagnosis and treatment. It is crucial to rationally fuse the complementary information in multi-modality PET/CT segmentation. However, existing methods usually lack interpretability and fail to sufficiently identify and aggregate critical information from different modalities. In this study, we proposed a novel segmentation framework that incorporated an interpretation module into the multi-modality segmentation backbone. The interpretation module highlighted critical features from each modality based on their contributions to the segmentation performance. To provide explicit supervision for the interpretation module, we introduced a novel interpretation loss with two fusion schemes: strengthened fusion and perturbed fusion. The interpretation loss guided the interpretation module to focus on informative features, enhancing its effectiveness in generating meaningful interpretable masks. Under the guidance of the interpretation module, the proposed approach can fully exploit meaningful features from each modality, leading to better integration of multi-modality information and improved segmentation performance. Ablative and comparative experiments were conducted on two PET/CT tumor segmentation datasets. The proposed approach surpassed the baseline by 1.4 and 1.8 Dices on two datasets, respectively, indicating the improvement achieved by the interpretation method. Furthermore, the proposed approach outperformed the best comparison approach by 0.9 and 0.6 Dices on two datasets, respectively. In addition, visualization and perturbation experiments further illustrated the effectiveness of the interpretation method in highlighting critical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
光轮2000发布了新的文献求助10
16秒前
123123完成签到 ,获得积分10
17秒前
玄光君完成签到,获得积分10
26秒前
传奇3应助光轮2000采纳,获得10
29秒前
123完成签到 ,获得积分10
30秒前
asd1576562308完成签到 ,获得积分10
32秒前
nanxing发布了新的文献求助10
40秒前
lcw1998发布了新的文献求助10
44秒前
50秒前
Yangpc发布了新的文献求助10
55秒前
1分钟前
光轮2000发布了新的文献求助10
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
科研通AI2S应助光轮2000采纳,获得10
1分钟前
1分钟前
orixero应助Wjh123456采纳,获得10
1分钟前
玄光君发布了新的文献求助10
1分钟前
吾日三省吾身完成签到 ,获得积分10
1分钟前
今后应助TwinQ采纳,获得10
1分钟前
1分钟前
Pauline完成签到 ,获得积分10
1分钟前
Wjh123456发布了新的文献求助10
1分钟前
1分钟前
TwinQ发布了新的文献求助10
2分钟前
2分钟前
日新又新完成签到,获得积分10
2分钟前
Charles完成签到,获得积分10
2分钟前
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
2分钟前
任性迎南发布了新的文献求助10
2分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
2分钟前
ding应助任性迎南采纳,获得10
2分钟前
3分钟前
橘橘橘子皮完成签到 ,获得积分10
3分钟前
程晓研完成签到 ,获得积分10
3分钟前
光轮2000发布了新的文献求助10
3分钟前
大林完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603285
求助须知:如何正确求助?哪些是违规求助? 4688360
关于积分的说明 14853336
捐赠科研通 4688979
什么是DOI,文献DOI怎么找? 2540586
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471594