Development of a transformer model for predicting the prognosis of patients with hepatocellular carcinoma after radiofrequency ablation

医学 肝细胞癌 射频消融术 队列 内科学 判别式 肿瘤科 烧蚀 人工智能 计算机科学
作者
Masaya Sato,Makoto Moriyama,Toshitaka Fukumoto,Tomoharu Yamada,Taijiro Wake,Ryo Nakagomi,T. Nakatsuka,Tatsuya Minami,Koji Uchino,Kenichiro Enooku,Hayato Nakagawa,Shuichiro Shiina,Kazuhiko Koike,Mitsuhiro Fujishiro,Ryosuke Tateishi
出处
期刊:Hepatology International [Springer Science+Business Media]
卷期号:18 (1): 131-137 被引量:5
标识
DOI:10.1007/s12072-023-10585-y
摘要

Abstract Introduction Radiofrequency ablation (RFA) is a widely accepted, minimally invasive treatment modality for patients with hepatocellular carcinoma (HCC). Accurate prognosis prediction is important to identify patients at high risk for cancer progression/recurrence after RFA. Recently, state-of-the-art transformer models showing improved performance over existing deep learning-based models have been developed in several fields. This study was aimed at developing and validating a transformer model to predict the overall survival in HCC patients with treated by RFA. Methods We enrolled a total of 1778 treatment-naïve HCC patients treated by RFA as the first-line treatment. We developed a transformer-based machine learning model to predict the overall survival in the HCC patients treated by RFA and compared its predictive performance with that of a deep learning-based model. Model performance was evaluated by determining the Harrel’s c-index and validated externally by the split-sample method. Results The Harrel’s c -index of the transformer-based model was 0.69, indicating its better discrimination performance than that of the deep learning model (Harrel’s c -index, 0.60) in the external validation cohort. The transformer model showed a high discriminative ability for stratifying the external validation cohort into two or three different risk groups ( p < 0.001 for both risk groupings). The model also enabled output of a personalized cumulative recurrence prediction curve for each patient. Conclusions We developed a novel transformer model for personalized prediction of the overall survival in HCC patients after RFA treatment. The current model may offer a personalized survival prediction schema for patients with HCC undergoing RFA treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁大完成签到,获得积分10
刚刚
爱听歌的峻熙完成签到,获得积分10
1秒前
一块巧克力完成签到,获得积分10
1秒前
刘兄完成签到,获得积分10
1秒前
和谐如容完成签到,获得积分10
1秒前
1秒前
可耐的汲发布了新的文献求助10
2秒前
2秒前
辰辰羽完成签到,获得积分10
3秒前
顾矜应助yss采纳,获得10
4秒前
4秒前
4秒前
像风一样完成签到,获得积分20
4秒前
4秒前
liu完成签到,获得积分10
5秒前
5秒前
杨雪妮发布了新的文献求助10
5秒前
瓶子里的大好人完成签到,获得积分10
5秒前
白泯完成签到,获得积分10
5秒前
糊涂的剑完成签到,获得积分20
6秒前
Raymond完成签到,获得积分0
6秒前
小鱼儿完成签到,获得积分10
6秒前
顾矜应助GG采纳,获得10
7秒前
7秒前
8秒前
匹诺曹完成签到,获得积分10
8秒前
冷酷的安珊完成签到,获得积分20
9秒前
9秒前
小宋同学完成签到,获得积分10
9秒前
lee发布了新的文献求助10
9秒前
热情十三发布了新的文献求助10
10秒前
粘豆包完成签到,获得积分10
10秒前
10秒前
危机的酒窝完成签到,获得积分10
10秒前
鱼儿想游发布了新的文献求助10
11秒前
11秒前
沉静傲霜发布了新的文献求助10
11秒前
whisper发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942