Development of a transformer model for predicting the prognosis of patients with hepatocellular carcinoma after radiofrequency ablation

医学 肝细胞癌 射频消融术 队列 内科学 判别式 肿瘤科 烧蚀 人工智能 计算机科学
作者
Masaya Sato,Makoto Moriyama,Toshitaka Fukumoto,Tomoharu Yamada,Taijiro Wake,Ryo Nakagomi,T. Nakatsuka,Tatsuya Minami,Koji Uchino,Kenichiro Enooku,Hayato Nakagawa,Shuichiro Shiina,Kazuhiko Koike,Mitsuhiro Fujishiro,Ryosuke Tateishi
出处
期刊:Hepatology International [Springer Science+Business Media]
卷期号:18 (1): 131-137 被引量:5
标识
DOI:10.1007/s12072-023-10585-y
摘要

Abstract Introduction Radiofrequency ablation (RFA) is a widely accepted, minimally invasive treatment modality for patients with hepatocellular carcinoma (HCC). Accurate prognosis prediction is important to identify patients at high risk for cancer progression/recurrence after RFA. Recently, state-of-the-art transformer models showing improved performance over existing deep learning-based models have been developed in several fields. This study was aimed at developing and validating a transformer model to predict the overall survival in HCC patients with treated by RFA. Methods We enrolled a total of 1778 treatment-naïve HCC patients treated by RFA as the first-line treatment. We developed a transformer-based machine learning model to predict the overall survival in the HCC patients treated by RFA and compared its predictive performance with that of a deep learning-based model. Model performance was evaluated by determining the Harrel’s c-index and validated externally by the split-sample method. Results The Harrel’s c -index of the transformer-based model was 0.69, indicating its better discrimination performance than that of the deep learning model (Harrel’s c -index, 0.60) in the external validation cohort. The transformer model showed a high discriminative ability for stratifying the external validation cohort into two or three different risk groups ( p < 0.001 for both risk groupings). The model also enabled output of a personalized cumulative recurrence prediction curve for each patient. Conclusions We developed a novel transformer model for personalized prediction of the overall survival in HCC patients after RFA treatment. The current model may offer a personalized survival prediction schema for patients with HCC undergoing RFA treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达芬骑驴完成签到,获得积分10
刚刚
科研通AI2S应助默默的问兰采纳,获得10
1秒前
柠檬发布了新的文献求助10
1秒前
1秒前
生生不息完成签到,获得积分10
1秒前
KD357完成签到,获得积分10
2秒前
缓慢含烟发布了新的文献求助10
2秒前
2秒前
LTDJYYD完成签到,获得积分10
2秒前
3秒前
zx发布了新的文献求助10
3秒前
自由的新波完成签到,获得积分10
3秒前
wualexandra完成签到,获得积分10
4秒前
科研通AI6应助Ly采纳,获得10
4秒前
4秒前
zyw发布了新的文献求助10
4秒前
hmx完成签到,获得积分10
4秒前
兰兰猪头发布了新的文献求助10
4秒前
5秒前
5秒前
打打应助卫踏歌采纳,获得10
5秒前
乐观金毛发布了新的文献求助10
5秒前
等等等等发布了新的文献求助10
6秒前
桐桐应助优美采纳,获得10
6秒前
能干一刀发布了新的文献求助10
6秒前
hhxx发布了新的文献求助10
6秒前
sakris完成签到 ,获得积分10
7秒前
所所应助54采纳,获得10
7秒前
zls完成签到,获得积分20
7秒前
不倦应助chen666采纳,获得10
7秒前
CodeCraft应助虚拟的绿柏采纳,获得10
8秒前
8秒前
小蘑菇应助明硕阳采纳,获得10
8秒前
缥缈蓉发布了新的文献求助10
8秒前
刘文静完成签到,获得积分10
8秒前
9秒前
9秒前
缓慢含烟完成签到,获得积分10
9秒前
10秒前
无花果应助王会跑采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849