Development of a transformer model for predicting the prognosis of patients with hepatocellular carcinoma after radiofrequency ablation

医学 肝细胞癌 射频消融术 队列 内科学 判别式 肿瘤科 烧蚀 人工智能 计算机科学
作者
Masaya Sato,Makoto Moriyama,Toshitaka Fukumoto,Tomoharu Yamada,Taijiro Wake,Ryo Nakagomi,T. Nakatsuka,Tatsuya Minami,Koji Uchino,Kenichiro Enooku,Hayato Nakagawa,Shuichiro Shiina,Kazuhiko Koike,Mitsuhiro Fujishiro,Ryosuke Tateishi
出处
期刊:Hepatology International [Springer Nature]
卷期号:18 (1): 131-137 被引量:5
标识
DOI:10.1007/s12072-023-10585-y
摘要

Abstract Introduction Radiofrequency ablation (RFA) is a widely accepted, minimally invasive treatment modality for patients with hepatocellular carcinoma (HCC). Accurate prognosis prediction is important to identify patients at high risk for cancer progression/recurrence after RFA. Recently, state-of-the-art transformer models showing improved performance over existing deep learning-based models have been developed in several fields. This study was aimed at developing and validating a transformer model to predict the overall survival in HCC patients with treated by RFA. Methods We enrolled a total of 1778 treatment-naïve HCC patients treated by RFA as the first-line treatment. We developed a transformer-based machine learning model to predict the overall survival in the HCC patients treated by RFA and compared its predictive performance with that of a deep learning-based model. Model performance was evaluated by determining the Harrel’s c-index and validated externally by the split-sample method. Results The Harrel’s c -index of the transformer-based model was 0.69, indicating its better discrimination performance than that of the deep learning model (Harrel’s c -index, 0.60) in the external validation cohort. The transformer model showed a high discriminative ability for stratifying the external validation cohort into two or three different risk groups ( p < 0.001 for both risk groupings). The model also enabled output of a personalized cumulative recurrence prediction curve for each patient. Conclusions We developed a novel transformer model for personalized prediction of the overall survival in HCC patients after RFA treatment. The current model may offer a personalized survival prediction schema for patients with HCC undergoing RFA treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助强健的黄蜂采纳,获得10
刚刚
我是老大应助Grace采纳,获得10
1秒前
1秒前
1秒前
思源应助团子采纳,获得10
1秒前
2秒前
纤云弄巧发布了新的文献求助30
3秒前
3秒前
郭mm完成签到,获得积分10
4秒前
5秒前
hqy完成签到,获得积分10
5秒前
Hello应助矜持采纳,获得10
6秒前
彭于晏应助Tom采纳,获得10
6秒前
6秒前
宋宋完成签到,获得积分10
6秒前
6秒前
evermore完成签到,获得积分10
6秒前
打打应助JiegeSCI采纳,获得10
7秒前
Ava应助皓沐风采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
evermore发布了新的文献求助30
10秒前
10秒前
奶奶的龙应助清墨采纳,获得30
10秒前
帅气的祥完成签到,获得积分10
10秒前
JuliannaBuls96应助xzy998采纳,获得60
11秒前
任性的惜珊完成签到,获得积分10
11秒前
隐形曼青应助icey采纳,获得10
12秒前
十里长亭发布了新的文献求助10
12秒前
隐形曼青应助无心的星月采纳,获得10
12秒前
12秒前
hhhhhheeeeee发布了新的文献求助10
12秒前
CodeCraft应助寂寞的羽毛采纳,获得10
13秒前
13秒前
13秒前
命运线完成签到,获得积分10
13秒前
jiayou发布了新的文献求助10
14秒前
阳光迎夏完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728463
求助须知:如何正确求助?哪些是违规求助? 5312850
关于积分的说明 15314159
捐赠科研通 4875631
什么是DOI,文献DOI怎么找? 2618899
邀请新用户注册赠送积分活动 1568458
关于科研通互助平台的介绍 1525134