Development of a transformer model for predicting the prognosis of patients with hepatocellular carcinoma after radiofrequency ablation

医学 肝细胞癌 射频消融术 队列 内科学 判别式 肿瘤科 烧蚀 人工智能 计算机科学
作者
Masaya Sato,Makoto Moriyama,Toshitaka Fukumoto,Tomoharu Yamada,Taijiro Wake,Ryo Nakagomi,T. Nakatsuka,Tatsuya Minami,Koji Uchino,Kenichiro Enooku,Hayato Nakagawa,Shuichiro Shiina,Kazuhiko Koike,Mitsuhiro Fujishiro,Ryosuke Tateishi
出处
期刊:Hepatology International [Springer Nature]
卷期号:18 (1): 131-137 被引量:5
标识
DOI:10.1007/s12072-023-10585-y
摘要

Abstract Introduction Radiofrequency ablation (RFA) is a widely accepted, minimally invasive treatment modality for patients with hepatocellular carcinoma (HCC). Accurate prognosis prediction is important to identify patients at high risk for cancer progression/recurrence after RFA. Recently, state-of-the-art transformer models showing improved performance over existing deep learning-based models have been developed in several fields. This study was aimed at developing and validating a transformer model to predict the overall survival in HCC patients with treated by RFA. Methods We enrolled a total of 1778 treatment-naïve HCC patients treated by RFA as the first-line treatment. We developed a transformer-based machine learning model to predict the overall survival in the HCC patients treated by RFA and compared its predictive performance with that of a deep learning-based model. Model performance was evaluated by determining the Harrel’s c-index and validated externally by the split-sample method. Results The Harrel’s c -index of the transformer-based model was 0.69, indicating its better discrimination performance than that of the deep learning model (Harrel’s c -index, 0.60) in the external validation cohort. The transformer model showed a high discriminative ability for stratifying the external validation cohort into two or three different risk groups ( p < 0.001 for both risk groupings). The model also enabled output of a personalized cumulative recurrence prediction curve for each patient. Conclusions We developed a novel transformer model for personalized prediction of the overall survival in HCC patients after RFA treatment. The current model may offer a personalized survival prediction schema for patients with HCC undergoing RFA treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助wuliumu采纳,获得10
刚刚
1秒前
1秒前
彭于晏应助贤惠的正豪采纳,获得10
1秒前
泠风来完成签到,获得积分10
2秒前
钇铯完成签到,获得积分10
3秒前
yrh完成签到,获得积分20
8秒前
hengwang完成签到,获得积分10
10秒前
11秒前
11秒前
我是老大应助现代的健柏采纳,获得10
13秒前
ong发布了新的文献求助10
15秒前
plum完成签到 ,获得积分10
17秒前
hkhk完成签到,获得积分10
17秒前
呵浅陌完成签到,获得积分10
19秒前
orixero应助现代飞鸟采纳,获得10
19秒前
wanci应助lyp采纳,获得10
19秒前
aaaa完成签到,获得积分10
20秒前
SciGPT应助忧伤的烧鹅采纳,获得10
21秒前
Leeanyq完成签到,获得积分20
22秒前
24秒前
24秒前
25秒前
26秒前
温谷丝完成签到,获得积分10
26秒前
123~!完成签到,获得积分10
27秒前
niuguibin完成签到,获得积分10
29秒前
29秒前
九月完成签到 ,获得积分10
29秒前
29秒前
hg0000完成签到,获得积分10
29秒前
lyp完成签到,获得积分20
29秒前
现代飞鸟发布了新的文献求助10
30秒前
30秒前
30秒前
典雅雁梅发布了新的文献求助10
30秒前
粒子耶完成签到,获得积分10
32秒前
念心发布了新的文献求助10
33秒前
五颜六色的白完成签到,获得积分10
33秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143679
求助须知:如何正确求助?哪些是违规求助? 2795139
关于积分的说明 7813405
捐赠科研通 2451158
什么是DOI,文献DOI怎么找? 1304338
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393