PIT: Progressive Interaction Transformer for Pedestrian Crossing Intention Prediction

行人 利用 推论 计算机科学 变压器 人工智能 人机交互 模拟 工程类 运输工程 计算机安全 电气工程 电压
作者
Yuchen Zhou,Guang Tan,Rui Zhong,Yaokun Li,Chao Gou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 14213-14225 被引量:19
标识
DOI:10.1109/tits.2023.3309309
摘要

For autonomous driving, one of the major challenges is to predict pedestrian crossing intention in ego-view. Pedestrian intention depends not only on their intrinsic goals but also on the stimulation of surrounding traffic elements. Considering the influence of other traffic elements on pedestrian intention, recent work introduced more traffic element information into the model to successfully improve performance. However, it is still difficult to effectively capture and fully exploit the potential dynamic spatio-temporal interactions among the target pedestrian and its surrounding traffic elements for accurate reasoning. In this work, inspired by neuroscience that human drivers tend to make continuous sensory-motor driving decisions by progressive visual stimulation, we propose a model termed Progressive Interaction Transformer (PIT) for pedestrian crossing intention prediction. Local pedestrian, global environment, and ego-vehicle motion are considered simultaneously in the proposed PIT. In particular, the temporal fusion block and self-attention mechanism are introduced to jointly and progressively model the dynamic spatio-temporal interactions among the three parties, allowing it to capture richer information and make prediction in a similar way to human drivers. Experimental results demonstrate that PIT achieves higher performance compared with other state-of-the-arts and preserves real-time inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨声完成签到,获得积分10
1秒前
DueR发布了新的文献求助10
1秒前
Liufgui应助YJ888采纳,获得10
1秒前
2秒前
4秒前
5秒前
学术蝗虫发布了新的文献求助10
6秒前
好好好完成签到,获得积分10
6秒前
王某发布了新的文献求助30
6秒前
6秒前
张兔子关注了科研通微信公众号
11秒前
难过冷玉发布了新的文献求助10
11秒前
逸晨发布了新的文献求助10
11秒前
14秒前
14秒前
水蜜桃幽灵完成签到,获得积分20
16秒前
难过冷玉完成签到,获得积分10
17秒前
a雪橙发布了新的文献求助10
18秒前
18秒前
Hina发布了新的文献求助30
18秒前
eueurhj完成签到,获得积分10
20秒前
多情邑发布了新的文献求助10
21秒前
上官若男应助逸晨采纳,获得10
21秒前
Akim应助阿童木采纳,获得10
21秒前
好好好发布了新的文献求助10
22秒前
22秒前
郑伟李完成签到,获得积分10
23秒前
23秒前
24秒前
石大大完成签到,获得积分10
24秒前
Akim应助宝贝丫头采纳,获得10
24秒前
奥特超曼应助宝贝丫头采纳,获得10
24秒前
王某完成签到,获得积分20
25秒前
善学以致用应助幸福大白采纳,获得10
25秒前
莫言发布了新的文献求助10
26秒前
27秒前
可爱玫瑰完成签到,获得积分10
27秒前
zhq发布了新的文献求助10
28秒前
清爽乐菱应助Discord采纳,获得30
29秒前
LiQi发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176