PIT: Progressive Interaction Transformer for Pedestrian Crossing Intention Prediction

行人 利用 推论 计算机科学 变压器 人工智能 人机交互 模拟 工程类 运输工程 计算机安全 电气工程 电压
作者
Yuchen Zhou,Guang Tan,Rui Zhong,Yaokun Li,Chao Gou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 14213-14225 被引量:62
标识
DOI:10.1109/tits.2023.3309309
摘要

For autonomous driving, one of the major challenges is to predict pedestrian crossing intention in ego-view. Pedestrian intention depends not only on their intrinsic goals but also on the stimulation of surrounding traffic elements. Considering the influence of other traffic elements on pedestrian intention, recent work introduced more traffic element information into the model to successfully improve performance. However, it is still difficult to effectively capture and fully exploit the potential dynamic spatio-temporal interactions among the target pedestrian and its surrounding traffic elements for accurate reasoning. In this work, inspired by neuroscience that human drivers tend to make continuous sensory-motor driving decisions by progressive visual stimulation, we propose a model termed Progressive Interaction Transformer (PIT) for pedestrian crossing intention prediction. Local pedestrian, global environment, and ego-vehicle motion are considered simultaneously in the proposed PIT. In particular, the temporal fusion block and self-attention mechanism are introduced to jointly and progressively model the dynamic spatio-temporal interactions among the three parties, allowing it to capture richer information and make prediction in a similar way to human drivers. Experimental results demonstrate that PIT achieves higher performance compared with other state-of-the-arts and preserves real-time inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
帅气善斓应助coffee采纳,获得10
2秒前
俏皮的茗茗完成签到,获得积分20
2秒前
2秒前
Dr.Dream发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
大椒完成签到 ,获得积分10
3秒前
yjj6809完成签到,获得积分10
3秒前
黄少阳发布了新的文献求助10
4秒前
4秒前
怪胎完成签到,获得积分10
4秒前
5秒前
7秒前
PGao发布了新的文献求助10
7秒前
xiaotangyuan发布了新的文献求助20
9秒前
Hello应助AdamHoalcraft采纳,获得10
9秒前
帅气的颜演完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
小航航013完成签到,获得积分10
10秒前
12秒前
12秒前
完美紫易完成签到,获得积分10
13秒前
华仔应助黄少阳采纳,获得10
13秒前
乐观的小鸡完成签到,获得积分10
15秒前
libe应助刘谦毅采纳,获得10
15秒前
简单沛山完成签到,获得积分10
16秒前
16秒前
16秒前
coesius完成签到,获得积分10
16秒前
luor完成签到,获得积分20
17秒前
冷艳的纸鹤完成签到,获得积分10
18秒前
18秒前
搜集达人应助沉静的砖头采纳,获得10
19秒前
Lucas应助残剑月采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
沉默发布了新的文献求助10
19秒前
zhang完成签到,获得积分10
20秒前
21秒前
无敌幸运儿完成签到 ,获得积分10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704813
求助须知:如何正确求助?哪些是违规求助? 5158878
关于积分的说明 15242939
捐赠科研通 4858662
什么是DOI,文献DOI怎么找? 2607392
邀请新用户注册赠送积分活动 1558393
关于科研通互助平台的介绍 1516137