PIT: Progressive Interaction Transformer for Pedestrian Crossing Intention Prediction

行人 利用 推论 计算机科学 变压器 人工智能 人机交互 模拟 工程类 运输工程 计算机安全 电气工程 电压
作者
Yuchen Zhou,Guang Tan,Rui Zhong,Yaokun Li,Chao Gou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 14213-14225 被引量:2
标识
DOI:10.1109/tits.2023.3309309
摘要

For autonomous driving, one of the major challenges is to predict pedestrian crossing intention in ego-view. Pedestrian intention depends not only on their intrinsic goals but also on the stimulation of surrounding traffic elements. Considering the influence of other traffic elements on pedestrian intention, recent work introduced more traffic element information into the model to successfully improve performance. However, it is still difficult to effectively capture and fully exploit the potential dynamic spatio-temporal interactions among the target pedestrian and its surrounding traffic elements for accurate reasoning. In this work, inspired by neuroscience that human drivers tend to make continuous sensory-motor driving decisions by progressive visual stimulation, we propose a model termed Progressive Interaction Transformer (PIT) for pedestrian crossing intention prediction. Local pedestrian, global environment, and ego-vehicle motion are considered simultaneously in the proposed PIT. In particular, the temporal fusion block and self-attention mechanism are introduced to jointly and progressively model the dynamic spatio-temporal interactions among the three parties, allowing it to capture richer information and make prediction in a similar way to human drivers. Experimental results demonstrate that PIT achieves higher performance compared with other state-of-the-arts and preserves real-time inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐子完成签到,获得积分10
1秒前
花生土豆发布了新的文献求助10
1秒前
hhhlulu完成签到,获得积分20
1秒前
1秒前
完美世界应助HQ采纳,获得10
1秒前
MorningStar应助我要住giao楼采纳,获得10
1秒前
2秒前
青青草发布了新的文献求助10
2秒前
3秒前
3秒前
MAIDANG完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
张羊羔完成签到,获得积分10
5秒前
6秒前
幻人发布了新的文献求助10
6秒前
可爱的函函应助嬴政飞采纳,获得10
6秒前
7秒前
7秒前
Keven发布了新的文献求助10
8秒前
lhh发布了新的文献求助10
8秒前
完美世界应助嗨嗨采纳,获得10
8秒前
8秒前
Peakfeng发布了新的文献求助10
8秒前
先知35发布了新的文献求助10
8秒前
Shen发布了新的文献求助10
8秒前
9秒前
nenoaowu发布了新的文献求助10
9秒前
9秒前
EMMA发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助半夏采纳,获得10
10秒前
10秒前
bzy发布了新的文献求助10
10秒前
11秒前
阳光的可愁完成签到,获得积分20
11秒前
123lx发布了新的文献求助10
11秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217320
求助须知:如何正确求助?哪些是违规求助? 2866528
关于积分的说明 8152235
捐赠科研通 2533239
什么是DOI,文献DOI怎么找? 1366165
科研通“疑难数据库(出版商)”最低求助积分说明 644687
邀请新用户注册赠送积分活动 617684