热解
过渡状态
化学
反应机理
催化作用
计算机科学
计算化学
有机化学
作者
Qiyuan Zhao,Brett M. Savoie
标识
DOI:10.1073/pnas.2305884120
摘要
Resolving the reaction networks associated with biomass pyrolysis is central to understanding product selectivity and aiding catalyst design to produce more valuable products. However, even the pyrolysis network of relatively simple [Formula: see text]-D-glucose remains unresolved due to its significant complexity in terms of the depth of the network and the number of major products. Here, a transition-state-guided reaction exploration has been performed that provides complete pathways to most significant experimental pyrolysis products of [Formula: see text]-D-glucose. The resulting reaction network involves over 31,000 reactions and transition states computed at the semiempirical quantum chemistry level and approximately 7,000 kinetically relevant reactions and transition states characterized with density function theory, comprising the largest reaction network reported for biomass pyrolysis. The exploration was conducted using graph-based rules to explore the reactivities of intermediates and an adaption of the Dijkstra algorithm to identify kinetically relevant intermediates. This simple exploration policy surprisingly (re)identified pathways to most major experimental pyrolysis products, many intermediates proposed by previous computational studies, and also identified new low-barrier reaction mechanisms that resolve outstanding discrepancies between reaction pathways and yields in isotope labeling experiments. This network also provides explanatory pathways for the high yield of hydroxymethylfurfural and the reaction pathway that contributes most to the formation of hydroxyacetaldehyde during glucose pyrolysis. Due to the limited domain knowledge required to generate this network, this approach should also be transferable to other complex reaction network prediction problems in biomass pyrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI