Analysis of the spatial-temporal evolution of Green and low carbon utilization efficiency of agricultural land in China and its influencing factors under the goal of carbon neutralization

农业 解释力 农用地 城市化 农业生产力 环境科学 土地利用 空间异质性 自然资源经济学 农业经济学 地理 经济 生态学 经济增长 考古 生物 哲学 认识论
作者
Jun Fu,Rui Ding,Yu-qi Zhu,Linyu Du,Siwei Shen,Lina Peng,Jian Zou,Yuxuan Hong,Juan Liang,Kexin Wang,Wenqian Xiao
出处
期刊:Environmental Research [Elsevier]
卷期号:237: 116881-116881 被引量:29
标识
DOI:10.1016/j.envres.2023.116881
摘要

Agricultural land is the most basic input factor for agricultural production and an essential component of terrestrial ecosystems, which plays a vital role in achieving carbon neutrality. Giving full play to the carbon-neutral contribution of agricultural land is a crucial part of China's economic transformation and green development. It incorporates carbon and pollution emissions from agricultural land use into the unexpected outputs of the Green and Low-carbon Utilization Efficiency of Agricultural Land (GLUEAL) evaluation system. The study utilized several advanced analytical tools, including the super-efficient Slacks-Based Measure (SBM) model, Exploratory Spatial-Temporal Data Analysis (ESTDA) method, Geodetector, and Geographically and Temporally Weighted Regression (GTWR) model. The objective was to examine the spatial-temporal evolution of GLUEAL and identify the factors that influenced it in all 31 provinces of China from 2005 to 2020. The results show that: (1) The overall spatial-temporal evolution of GLUEAL showed an increasing trend, but the disparity between provinces and regions became wider. (2) Most provinces have not yet made significant spatial and temporal jumps. They have high spatial cohesion with specific "path-dependent" characteristics. (3) The Geodetector results reveal that the Number of Rural Labor Force with Higher Education (NRLFHE) and Technology Support for Agriculture (TSA) have insufficient explanatory power on average for GLUEAL. Agricultural Economic Development Level (AEDL), Urbanization Level (UL), Multiple Crop Index (MCI), Planting Structure (PS), Degree of Crop Damage (DCD), Financial support for agriculture (FSA), and Agricultural mechanization level (AML) had stronger explanatory power on average for GLUEAL and were important factors influencing GLUEAL levels. (4) The average influence of AEDL, UL, FSA, and AML on GLUEAL changed from negative to positive. The average influence of MCI and DCD on GLUEAL was negative, and the average influence of PS on GLUEAL changed from positive to negative. This study provides a comprehensive description of the spatial and temporal evolution of GLUEAL in China. It reveals the key factors influencing GLUEAL and analyzes their spatial variations and impact patterns. These findings offer robust evidence for government policymakers to formulate policy measures for sustainable agricultural development and optimized resource allocation, promoting the transformation of agricultural land towards green and low-carbon practices and advancing the achievement of sustainable development goals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
成就的咖啡完成签到,获得积分10
刚刚
刚刚
刚刚
在水一方应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
深情安青应助科研通管家采纳,获得30
1秒前
1秒前
HLS应助科研通管家采纳,获得10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
lizishu应助1212采纳,获得20
2秒前
杨杨应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
墨琼琼应助科研通管家采纳,获得10
2秒前
俏皮晓曼完成签到,获得积分10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI6.1应助流星采纳,获得150
2秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
闪闪的诗霜完成签到,获得积分10
2秒前
2秒前
宋子琛发布了新的文献求助10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851