Analysis of the spatial-temporal evolution of Green and low carbon utilization efficiency of agricultural land in China and its influencing factors under the goal of carbon neutralization

农业 解释力 农用地 城市化 农业生产力 环境科学 土地利用 空间异质性 自然资源经济学 农业经济学 地理 经济 生态学 经济增长 考古 生物 哲学 认识论
作者
Jun Fu,Rui Ding,Yu-qi Zhu,Linyu Du,Siwei Shen,Lina Peng,Jian Zou,Yuxuan Hong,Juan Liang,Kexin Wang,Wenqian Xiao
出处
期刊:Environmental Research [Elsevier]
卷期号:237: 116881-116881 被引量:23
标识
DOI:10.1016/j.envres.2023.116881
摘要

Agricultural land is the most basic input factor for agricultural production and an essential component of terrestrial ecosystems, which plays a vital role in achieving carbon neutrality. Giving full play to the carbon-neutral contribution of agricultural land is a crucial part of China's economic transformation and green development. It incorporates carbon and pollution emissions from agricultural land use into the unexpected outputs of the Green and Low-carbon Utilization Efficiency of Agricultural Land (GLUEAL) evaluation system. The study utilized several advanced analytical tools, including the super-efficient Slacks-Based Measure (SBM) model, Exploratory Spatial-Temporal Data Analysis (ESTDA) method, Geodetector, and Geographically and Temporally Weighted Regression (GTWR) model. The objective was to examine the spatial-temporal evolution of GLUEAL and identify the factors that influenced it in all 31 provinces of China from 2005 to 2020. The results show that: (1) The overall spatial-temporal evolution of GLUEAL showed an increasing trend, but the disparity between provinces and regions became wider. (2) Most provinces have not yet made significant spatial and temporal jumps. They have high spatial cohesion with specific "path-dependent" characteristics. (3) The Geodetector results reveal that the Number of Rural Labor Force with Higher Education (NRLFHE) and Technology Support for Agriculture (TSA) have insufficient explanatory power on average for GLUEAL. Agricultural Economic Development Level (AEDL), Urbanization Level (UL), Multiple Crop Index (MCI), Planting Structure (PS), Degree of Crop Damage (DCD), Financial support for agriculture (FSA), and Agricultural mechanization level (AML) had stronger explanatory power on average for GLUEAL and were important factors influencing GLUEAL levels. (4) The average influence of AEDL, UL, FSA, and AML on GLUEAL changed from negative to positive. The average influence of MCI and DCD on GLUEAL was negative, and the average influence of PS on GLUEAL changed from positive to negative. This study provides a comprehensive description of the spatial and temporal evolution of GLUEAL in China. It reveals the key factors influencing GLUEAL and analyzes their spatial variations and impact patterns. These findings offer robust evidence for government policymakers to formulate policy measures for sustainable agricultural development and optimized resource allocation, promoting the transformation of agricultural land towards green and low-carbon practices and advancing the achievement of sustainable development goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玱玱完成签到,获得积分10
1秒前
1秒前
千帆过发布了新的文献求助10
1秒前
王小敏敏儿完成签到 ,获得积分10
2秒前
2秒前
3秒前
sdndkjfvb完成签到,获得积分10
5秒前
春晓发布了新的文献求助10
5秒前
zzzz应助玱玱采纳,获得30
5秒前
sunming完成签到,获得积分10
7秒前
7秒前
zzznznnn发布了新的文献求助10
7秒前
9秒前
Soph发布了新的文献求助10
11秒前
爆米花应助友好的储采纳,获得10
12秒前
Ice应助积极若云采纳,获得20
14秒前
不安红豆完成签到,获得积分10
14秒前
孤独梦安完成签到,获得积分10
16秒前
18秒前
BBA完成签到 ,获得积分10
18秒前
18秒前
19秒前
清爽文博完成签到,获得积分10
20秒前
21秒前
Flowers发布了新的文献求助10
22秒前
Ava应助刻苦帆布鞋采纳,获得10
22秒前
23秒前
YI发布了新的文献求助10
24秒前
26秒前
Ice应助美好惜芹采纳,获得10
27秒前
28秒前
hyd发布了新的文献求助10
29秒前
MichaelQin发布了新的文献求助10
29秒前
友好的储发布了新的文献求助10
31秒前
在水一方应助科研通管家采纳,获得10
32秒前
bkagyin应助科研通管家采纳,获得10
32秒前
烟花应助科研通管家采纳,获得10
32秒前
32秒前
ding应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293276
求助须知:如何正确求助?哪些是违规求助? 2929410
关于积分的说明 8441615
捐赠科研通 2601546
什么是DOI,文献DOI怎么找? 1419967
科研通“疑难数据库(出版商)”最低求助积分说明 660479
邀请新用户注册赠送积分活动 643063