A multimodal fusion emotion recognition method based on multitask learning and attention mechanism

概化理论 计算机科学 模式 人工智能 模态(人机交互) 相似性(几何) 任务(项目管理) 情绪识别 多模式学习 机制(生物学) 机器学习 图像(数学) 心理学 发展心理学 哲学 社会学 经济 管理 认识论 社会科学
作者
Jinbao Xie,Jiyu Wang,Qingyan Wang,Dali Yang,Jinming Gu,Yongqiang Tang,Yury I. Varatnitski
出处
期刊:Neurocomputing [Elsevier]
卷期号:556: 126649-126649 被引量:10
标识
DOI:10.1016/j.neucom.2023.126649
摘要

With new developments in the field of human–computer interaction, researchers are now paying attention to emotion recognition, especially multimodal emotion recognition, as emotion is a multidimensional expression. In this study, we propose a multimodal fusion emotion recognition method (MTL-BAM) based on multitask learning and the attention mechanism to tackle the major problems encountered in multimodal emotion recognition tasks regarding the lack of consideration of emotion interactions among modalities and the focus on emotion similarity among modalities while ignoring the differences. By improving the attention mechanism, the emotional contribution of each modality is further analyzed so that the emotional representations of each modality can learn from and complement each other to achieve better interactive fusion effect, thereby building a multitask learning framework. By introducing three types of monomodal emotion recognition tasks as auxiliary tasks, the model can detect emotion differences. Simultaneously, the label generation unit is introduced into the auxiliary tasks, and the monomodal emotion label value can be obtained more accurately through two proportional formulas while preventing the zero value problem. Our results show that the proposed method outperforms selected state-of-the-art methods on four evaluation indexes of emotion classification (i.e., accuracy, F1 score, MAE, and Pearson correlation coefficient). The proposed method achieved accuracy rates of 85.36% and 84.61% on the published multimodal datasets of CMU-MOSI and CMU-MOSEI, respectively, which are 2–6% higher than those of existing state-of-the-art models, demonstrating good multimodal emotion recognition performance and strong generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小汪汪完成签到,获得积分10
刚刚
MM发布了新的文献求助10
刚刚
堪妙松完成签到,获得积分20
刚刚
yao完成签到 ,获得积分10
刚刚
天天快乐应助荷小哈采纳,获得10
1秒前
倩倩发布了新的文献求助10
1秒前
hylqj123完成签到,获得积分10
1秒前
雪茶完成签到,获得积分10
1秒前
1秒前
junze发布了新的文献求助10
1秒前
2秒前
2秒前
充电宝应助可耐的不平采纳,获得10
2秒前
桐桐应助可耐的不平采纳,获得10
2秒前
2秒前
田様应助可耐的不平采纳,获得10
3秒前
Akim应助可耐的不平采纳,获得10
3秒前
JamesPei应助luchong采纳,获得30
3秒前
大个应助可耐的不平采纳,获得10
3秒前
3秒前
Jasper应助可耐的不平采纳,获得10
3秒前
英俊的铭应助可耐的不平采纳,获得10
3秒前
研友_VZG7GZ应助可耐的不平采纳,获得10
3秒前
星辰大海应助可耐的不平采纳,获得10
4秒前
丘比特应助可耐的不平采纳,获得10
4秒前
4秒前
4秒前
coco发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
研友_VZG7GZ应助M27采纳,获得10
6秒前
luchong完成签到,获得积分10
6秒前
hylqj123发布了新的文献求助20
6秒前
cc完成签到 ,获得积分10
7秒前
zjl关闭了zjl文献求助
7秒前
7秒前
123发布了新的文献求助10
7秒前
francesliu完成签到,获得积分10
8秒前
yyhgyg完成签到,获得积分10
8秒前
yy发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978