清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A multimodal fusion emotion recognition method based on multitask learning and attention mechanism

概化理论 计算机科学 模式 人工智能 模态(人机交互) 相似性(几何) 任务(项目管理) 情绪识别 多模式学习 机制(生物学) 机器学习 图像(数学) 心理学 发展心理学 哲学 社会学 经济 管理 认识论 社会科学
作者
Jinbao Xie,Jiyu Wang,Qingyan Wang,Dali Yang,Jinming Gu,Yongqiang Tang,Yury I. Varatnitski
出处
期刊:Neurocomputing [Elsevier]
卷期号:556: 126649-126649 被引量:10
标识
DOI:10.1016/j.neucom.2023.126649
摘要

With new developments in the field of human–computer interaction, researchers are now paying attention to emotion recognition, especially multimodal emotion recognition, as emotion is a multidimensional expression. In this study, we propose a multimodal fusion emotion recognition method (MTL-BAM) based on multitask learning and the attention mechanism to tackle the major problems encountered in multimodal emotion recognition tasks regarding the lack of consideration of emotion interactions among modalities and the focus on emotion similarity among modalities while ignoring the differences. By improving the attention mechanism, the emotional contribution of each modality is further analyzed so that the emotional representations of each modality can learn from and complement each other to achieve better interactive fusion effect, thereby building a multitask learning framework. By introducing three types of monomodal emotion recognition tasks as auxiliary tasks, the model can detect emotion differences. Simultaneously, the label generation unit is introduced into the auxiliary tasks, and the monomodal emotion label value can be obtained more accurately through two proportional formulas while preventing the zero value problem. Our results show that the proposed method outperforms selected state-of-the-art methods on four evaluation indexes of emotion classification (i.e., accuracy, F1 score, MAE, and Pearson correlation coefficient). The proposed method achieved accuracy rates of 85.36% and 84.61% on the published multimodal datasets of CMU-MOSI and CMU-MOSEI, respectively, which are 2–6% higher than those of existing state-of-the-art models, demonstrating good multimodal emotion recognition performance and strong generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林克完成签到,获得积分10
4秒前
呆萌冰彤完成签到 ,获得积分10
7秒前
11秒前
银鱼在游发布了新的文献求助10
16秒前
zhuosht完成签到 ,获得积分10
19秒前
鲤鱼山人完成签到 ,获得积分10
26秒前
sevenhill完成签到 ,获得积分0
38秒前
Orange应助www采纳,获得10
38秒前
Arctic完成签到 ,获得积分10
40秒前
zzgpku完成签到,获得积分0
44秒前
wave8013完成签到 ,获得积分10
57秒前
1分钟前
两个轮完成签到 ,获得积分10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
英俊的铭应助ysss0831采纳,获得10
1分钟前
红火完成签到 ,获得积分10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
herpes完成签到 ,获得积分10
2分钟前
chichenglin完成签到 ,获得积分0
2分钟前
gmc完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Yuki完成签到 ,获得积分10
3分钟前
3分钟前
朱光辉完成签到,获得积分10
3分钟前
22完成签到 ,获得积分10
3分钟前
Moona发布了新的文献求助10
3分钟前
Adc应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
ysss0831完成签到,获得积分10
3分钟前
ysss0831发布了新的文献求助10
4分钟前
4分钟前
www发布了新的文献求助10
4分钟前
嘻嘻完成签到,获得积分10
4分钟前
坚定盈完成签到,获得积分20
4分钟前
坚定盈发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715229
求助须知:如何正确求助?哪些是违规求助? 5232233
关于积分的说明 15274227
捐赠科研通 4866222
什么是DOI,文献DOI怎么找? 2612791
邀请新用户注册赠送积分活动 1562951
关于科研通互助平台的介绍 1520349