A multimodal fusion emotion recognition method based on multitask learning and attention mechanism

概化理论 计算机科学 模式 人工智能 模态(人机交互) 相似性(几何) 任务(项目管理) 情绪识别 多模式学习 机制(生物学) 机器学习 图像(数学) 心理学 社会科学 发展心理学 哲学 管理 认识论 社会学 经济
作者
Jinbao Xie,Wei Wang,Qingyan Wang,Yang Dali,Jinming Gu,Yongqiang Tang,Yury I. Varatnitski
出处
期刊:Neurocomputing [Elsevier]
卷期号:556: 126649-126649 被引量:6
标识
DOI:10.1016/j.neucom.2023.126649
摘要

With new developments in the field of human–computer interaction, researchers are now paying attention to emotion recognition, especially multimodal emotion recognition, as emotion is a multidimensional expression. In this study, we propose a multimodal fusion emotion recognition method (MTL-BAM) based on multitask learning and the attention mechanism to tackle the major problems encountered in multimodal emotion recognition tasks regarding the lack of consideration of emotion interactions among modalities and the focus on emotion similarity among modalities while ignoring the differences. By improving the attention mechanism, the emotional contribution of each modality is further analyzed so that the emotional representations of each modality can learn from and complement each other to achieve better interactive fusion effect, thereby building a multitask learning framework. By introducing three types of monomodal emotion recognition tasks as auxiliary tasks, the model can detect emotion differences. Simultaneously, the label generation unit is introduced into the auxiliary tasks, and the monomodal emotion label value can be obtained more accurately through two proportional formulas while preventing the zero value problem. Our results show that the proposed method outperforms selected state-of-the-art methods on four evaluation indexes of emotion classification (i.e., accuracy, F1 score, MAE, and Pearson correlation coefficient). The proposed method achieved accuracy rates of 85.36% and 84.61% on the published multimodal datasets of CMU-MOSI and CMU-MOSEI, respectively, which are 2–6% higher than those of existing state-of-the-art models, demonstrating good multimodal emotion recognition performance and strong generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助忧郁绣连采纳,获得10
1秒前
甜甜穆完成签到,获得积分10
2秒前
ChrisKim发布了新的文献求助10
2秒前
白白白完成签到 ,获得积分10
2秒前
桐桐应助洗剪吹采纳,获得10
2秒前
2秒前
学术老6完成签到 ,获得积分10
4秒前
在水一方应助顾的采纳,获得10
5秒前
5秒前
李健应助里耶熊采纳,获得10
5秒前
英俊的铭应助salvage采纳,获得10
5秒前
6秒前
香蕉觅云应助SGQT采纳,获得10
6秒前
Ava应助blooming boy采纳,获得10
7秒前
DCCCdddcc发布了新的文献求助30
8秒前
无花果应助杰森斯坦虎采纳,获得10
8秒前
of发布了新的文献求助10
9秒前
bingbing完成签到,获得积分10
9秒前
祖难破发布了新的文献求助20
10秒前
薇小朵发布了新的文献求助10
11秒前
Curry完成签到,获得积分10
12秒前
12秒前
ty发布了新的文献求助10
12秒前
清新的安波完成签到,获得积分10
13秒前
14秒前
leoxiao发布了新的文献求助10
15秒前
15秒前
17秒前
18秒前
18秒前
18秒前
blooming boy发布了新的文献求助10
19秒前
you发布了新的文献求助10
19秒前
大头发布了新的文献求助10
20秒前
zha完成签到,获得积分10
20秒前
leoxiao完成签到,获得积分10
21秒前
奋斗飞阳关注了科研通微信公众号
22秒前
顾的发布了新的文献求助10
22秒前
Zmmmmm完成签到,获得积分10
22秒前
美好斓应助白白白采纳,获得30
24秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137922
求助须知:如何正确求助?哪些是违规求助? 2788820
关于积分的说明 7788709
捐赠科研通 2445219
什么是DOI,文献DOI怎么找? 1300219
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046