A multimodal fusion emotion recognition method based on multitask learning and attention mechanism

概化理论 计算机科学 模式 人工智能 模态(人机交互) 相似性(几何) 任务(项目管理) 情绪识别 多模式学习 机制(生物学) 机器学习 图像(数学) 心理学 发展心理学 哲学 社会学 经济 管理 认识论 社会科学
作者
Jinbao Xie,Wei Wang,Qingyan Wang,Yang Dali,Jinming Gu,Yongqiang Tang,Yury I. Varatnitski
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:556: 126649-126649 被引量:6
标识
DOI:10.1016/j.neucom.2023.126649
摘要

With new developments in the field of human–computer interaction, researchers are now paying attention to emotion recognition, especially multimodal emotion recognition, as emotion is a multidimensional expression. In this study, we propose a multimodal fusion emotion recognition method (MTL-BAM) based on multitask learning and the attention mechanism to tackle the major problems encountered in multimodal emotion recognition tasks regarding the lack of consideration of emotion interactions among modalities and the focus on emotion similarity among modalities while ignoring the differences. By improving the attention mechanism, the emotional contribution of each modality is further analyzed so that the emotional representations of each modality can learn from and complement each other to achieve better interactive fusion effect, thereby building a multitask learning framework. By introducing three types of monomodal emotion recognition tasks as auxiliary tasks, the model can detect emotion differences. Simultaneously, the label generation unit is introduced into the auxiliary tasks, and the monomodal emotion label value can be obtained more accurately through two proportional formulas while preventing the zero value problem. Our results show that the proposed method outperforms selected state-of-the-art methods on four evaluation indexes of emotion classification (i.e., accuracy, F1 score, MAE, and Pearson correlation coefficient). The proposed method achieved accuracy rates of 85.36% and 84.61% on the published multimodal datasets of CMU-MOSI and CMU-MOSEI, respectively, which are 2–6% higher than those of existing state-of-the-art models, demonstrating good multimodal emotion recognition performance and strong generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助cora采纳,获得10
1秒前
瘦瘦妖妖发布了新的文献求助10
2秒前
3秒前
楚轩发布了新的文献求助10
3秒前
优雅猕猴桃给优雅猕猴桃的求助进行了留言
3秒前
lemongulf完成签到 ,获得积分10
4秒前
FashionBoy应助D.lon采纳,获得10
4秒前
yuruibo发布了新的文献求助10
4秒前
sanch发布了新的文献求助10
4秒前
5秒前
6秒前
诚心爆米花完成签到 ,获得积分10
7秒前
cora完成签到,获得积分10
7秒前
一往如常发布了新的文献求助10
7秒前
DDLDOG发布了新的文献求助30
8秒前
8秒前
monoklatt发布了新的文献求助10
9秒前
小先生完成签到,获得积分10
9秒前
罗伊黄完成签到 ,获得积分10
9秒前
10秒前
若雪成依完成签到 ,获得积分10
10秒前
嘻嘻嘻完成签到,获得积分10
11秒前
wisper发布了新的文献求助10
11秒前
chai发布了新的文献求助10
11秒前
12秒前
Owen应助科研小白采纳,获得10
12秒前
懵懂的小蜜蜂完成签到,获得积分10
13秒前
free发布了新的文献求助10
14秒前
14秒前
Azhou完成签到,获得积分10
14秒前
liuhang完成签到,获得积分10
14秒前
14秒前
Xu完成签到,获得积分10
15秒前
cc发布了新的文献求助10
16秒前
17秒前
搞怪羊完成签到,获得积分20
17秒前
Ava应助sanch采纳,获得30
18秒前
调皮的发布了新的文献求助10
18秒前
D.lon完成签到,获得积分20
18秒前
jtc完成签到,获得积分10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352