Automatic segmentation of atrial fibrillation and flutter in single-lead electrocardiograms by self-supervised learning and Transformer architecture

分割 心房颤动 计算机科学 人工智能 深度学习 心房扑动 医学 模式识别(心理学) 心脏病学
作者
Donghwan Yun,Hyun-Lim Yang,Soonil Kwon,Hyun‐Jung Lee,K. H. Kim,Kwangsoo Kim,Hyung‐Chul Lee,Chul-Woo Jung,Yon Su Kim,Seung Seok Han
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (1): 79-88 被引量:5
标识
DOI:10.1093/jamia/ocad219
摘要

Abstract Objectives Automatic detection of atrial fibrillation and flutter (AF/AFL) is a significant concern in preventing stroke and mitigating hemodynamic instability. Herein, we developed a Transformer-based deep learning model for AF/AFL segmentation in single-lead electrocardiograms (ECGs) by self-supervised learning with masked signal modeling (MSM). Materials and Methods We retrieved data from 11 open-source databases on PhysioNet; 7 of these databases included labeled ECGs, while the other 4 were without labels. Each database contained ECG recordings with durations of ≥30 s. A total of 24 intradialytic ECGs with paroxysmal AF/AFL during 4 h of hemodialysis sessions at Seoul National University Hospital were used for external validation. The model was pretrained by predicting masked areas of ECG signals and fine-tuned by predicting AF/AFL areas. Cross-database validation was used for evaluation, and the intersection over union (IOU) was used as a main performance metric in external database validation. Results In the 7 labeled databases, the areas marked as AF/AFL constituted 41.1% of the total ECG signals, ranging from 0.19% to 51.31%. In the evaluation per ECG segment, the model achieved IOU values of 0.9254 and 0.9477 for AF/AFL segmentation and other segmentation tasks, respectively. When applied to intradialytic ECGs with paroxysmal AF/AFL, the IOUs for the segmentation of AF/AFL and non-AF/AFL were 0.9896 and 0.9650, respectively. Model performance by different training procedure indicated that pretraining with MSM and the application of an appropriate masking ratio both contributed to the model performance. It also showed higher IOUs of AF/AFL labels than in previous studies when training and test databases were matched. Conclusion The present model with self-supervised learning by MSM performs robustly in segmenting AF/AFL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栾小鱼发布了新的文献求助10
2秒前
qin希望应助子车碧琴采纳,获得10
2秒前
2秒前
2秒前
mily发布了新的文献求助10
3秒前
王w发布了新的文献求助10
3秒前
6秒前
6秒前
甜美又菱完成签到,获得积分10
9秒前
HalfGumps发布了新的文献求助10
9秒前
小唐完成签到,获得积分10
10秒前
10秒前
zhikaiyici应助明亮的映天采纳,获得10
11秒前
AnyYuan完成签到,获得积分10
12秒前
斯文败类应助栾小鱼采纳,获得10
13秒前
13秒前
Lucas应助Liao采纳,获得10
13秒前
SONG完成签到,获得积分20
13秒前
云枝发布了新的文献求助10
13秒前
秋中雨发布了新的文献求助10
15秒前
Lucas应助ZH采纳,获得10
17秒前
SciGPT应助chen采纳,获得10
17秒前
19秒前
19秒前
熊11发布了新的文献求助10
19秒前
小羊完成签到,获得积分10
19秒前
雪白问兰应助Pana采纳,获得10
19秒前
20秒前
20秒前
qmdx完成签到,获得积分10
20秒前
禾火发布了新的文献求助20
20秒前
AnyYuan发布了新的文献求助30
22秒前
fdpb发布了新的文献求助20
24秒前
24秒前
27秒前
吃书的猪完成签到,获得积分10
27秒前
研友_VZG7GZ应助害怕的小之采纳,获得10
27秒前
27秒前
隐形曼青应助huang采纳,获得10
27秒前
包容剑鬼发布了新的文献求助12
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154185
求助须知:如何正确求助?哪些是违规求助? 2805059
关于积分的说明 7863283
捐赠科研通 2463232
什么是DOI,文献DOI怎么找? 1311173
科研通“疑难数据库(出版商)”最低求助积分说明 629464
版权声明 601821