C3F: Constant Collaboration and Communication Framework for Graph-Representation Dynamic Multi-Robotic Systems

机器人 计算机科学 强化学习 人工智能 适应性 稳健性(进化) 机器人学 人机交互 分布式计算 图形 理论计算机科学 生态学 生物化学 化学 基因 生物
作者
Hongda Jia,Zijian Gao,Cheng Yang,Bo Ding,Yuanzhao Zhai,Huaimin Wang
出处
期刊:IEEE robotics and automation letters 卷期号:9 (1): 95-102
标识
DOI:10.1109/lra.2023.3331903
摘要

Deep reinforcement learning (DRL) methods have been widely applied in distributed multi-robotic systems and successfully realized autonomous learning in many fields. In these fields, robots need to communicate and collaborate with other robots in real time, and reach agreed cognition for task assignment, which puts high requirements on efficiency and stability. However, robots may often get damaged even crash in complex environments, and have to be dynamically substituted. It seems not robust enough for most existing DRL works to make new robots fast adapt to current team policies, causing performance degradation. In this work, we get inspired by the genetic mechanism of social animals' instincts, and propose a robust multi-robotic collaboration and communication framework, C3F . It introduces graph-based representation to discover more features on the relevance among robots, and takes advantage of meta learning mechanism to conclude the general meta policy. When some robots crash and get replaced by new ones, this meta policy will be reused to guide new robots on how to quickly follow the existing collaboration and communication rules, and fast adapt to their roles in the team. The experiments on both the Webots simulator and the Starcraft II platform indicate that our methods have better performance compared with some SOTA methods, showing strong robustness and remarkable adaptability to the dynamic substitution in multi-robotic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
此系树心台完成签到,获得积分10
1秒前
3秒前
落霞与孤鹜齐飞完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
王博士完成签到,获得积分10
5秒前
桐桐应助斯文念波采纳,获得10
5秒前
ding应助天天采纳,获得100
6秒前
minino完成签到 ,获得积分10
6秒前
发发发关注了科研通微信公众号
6秒前
6秒前
羽宇完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
9秒前
morena发布了新的文献求助10
10秒前
莫愁完成签到,获得积分10
10秒前
Lailai发布了新的文献求助10
11秒前
秋实发布了新的文献求助10
12秒前
削菠萝发布了新的文献求助10
12秒前
lifezqh完成签到,获得积分10
12秒前
科研通AI5应助斯文墨镜采纳,获得10
12秒前
13秒前
14秒前
15秒前
郭郭发布了新的文献求助10
16秒前
16秒前
外向太阳完成签到,获得积分10
17秒前
可爱的函函应助拼搏梦旋采纳,获得10
17秒前
天天发布了新的文献求助10
17秒前
斯文念波发布了新的文献求助10
18秒前
Animagus应助苏苏采纳,获得20
20秒前
Lailai完成签到,获得积分10
20秒前
斯文墨镜发布了新的文献求助10
22秒前
23秒前
削菠萝完成签到,获得积分10
23秒前
Muhammad发布了新的文献求助10
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176