Predicting post–liver transplant outcomes in patients with acute-on-chronic liver failure using Expert-Augmented Machine Learning

医学 接收机工作特性 成对比较 机器学习 人工智能 肝移植 置信区间 肝衰竭 移植 内科学 计算机科学
作者
Jin Ge,Jean C. Digitale,Cynthia Fenton,Charles E. McCulloch,Jennifer C. Lai,Mark J. Pletcher,Efstathios D. Gennatas
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (12): 1908-1921 被引量:1
标识
DOI:10.1016/j.ajt.2023.08.022
摘要

Liver transplantation (LT) is a treatment for acute-on-chronic liver failure (ACLF), but high post-LT mortality has been reported. Existing post-LT models in ACLF have been limited. We developed an Expert-Augmented Machine Learning (EAML) model to predict post-LT outcomes. We identified ACLF patients who underwent LT in the University of California Health Data Warehouse. We applied the RuleFit machine learning (ML) algorithm to extract rules from decision trees and create intermediate models. We asked human experts to rate the rules generated by RuleFit and incorporated these ratings to generate final EAML models. We identified 1384 ACLF patients. For death at 1 year, areas under the receiver-operating characteristic curve were 0.707 (confidence interval [CI] 0.625-0.793) for EAML and 0.719 (CI 0.640-0.800) for RuleFit. For death at 90 days, areas under the receiver-operating characteristic curve were 0.678 (CI 0.581-0.776) for EAML and 0.707 (CI 0.615-0.800) for RuleFit. In pairwise comparisons, both EAML and RuleFit models outperformed cross-sectional models. Significant discrepancies between experts and ML occurred in rankings of biomarkers used in clinical practice. EAML may serve as a method for ML-guided hypothesis generation in further ACLF research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yike发布了新的文献求助10
1秒前
1秒前
碧海流花完成签到,获得积分10
1秒前
赘婿应助小yo超爱学采纳,获得10
1秒前
今后应助杜薇薇采纳,获得10
1秒前
张皓123完成签到,获得积分10
1秒前
charlie完成签到,获得积分10
1秒前
Ade阿德完成签到,获得积分10
2秒前
2秒前
2秒前
脑洞疼应助狗大王采纳,获得30
3秒前
漠之梦完成签到,获得积分10
3秒前
张雯雯发布了新的文献求助10
4秒前
4秒前
科研通AI6应助B站萧亚轩采纳,获得10
4秒前
英姑应助B站萧亚轩采纳,获得10
5秒前
科研通AI6应助B站萧亚轩采纳,获得10
5秒前
万信心完成签到,获得积分10
5秒前
完美世界应助B站萧亚轩采纳,获得10
5秒前
科研通AI6应助B站萧亚轩采纳,获得10
5秒前
科研通AI6应助B站萧亚轩采纳,获得10
5秒前
科研通AI6应助B站萧亚轩采纳,获得30
5秒前
共享精神应助B站萧亚轩采纳,获得10
5秒前
研友_VZG7GZ应助B站萧亚轩采纳,获得10
5秒前
英俊的铭应助Annie采纳,获得10
5秒前
独特天问完成签到,获得积分10
5秒前
Ksharp10完成签到,获得积分10
5秒前
852应助ly采纳,获得10
5秒前
5秒前
SciGPT应助Key采纳,获得10
6秒前
小王完成签到 ,获得积分10
6秒前
6秒前
wpp完成签到,获得积分10
7秒前
7秒前
情怀应助盛乾亮采纳,获得10
7秒前
8秒前
dong发布了新的文献求助10
8秒前
大古完成签到,获得积分10
8秒前
怡然浩然完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731