Deep Learning with Geometry-Enhanced Molecular Representation for Augmentation of Large-Scale Docking-Based Virtual Screening

虚拟筛选 对接(动物) 计算机科学 化学空间 药物发现 限制 人工智能 机器学习 化学数据库 码头 生物信息学 化学 工程类 生物 医学 机械工程 生物化学 护理部
作者
Lan Yu,Xiao He,Xiaomin Fang,Lihang Liu,Jinfeng Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6501-6514 被引量:1
标识
DOI:10.1021/acs.jcim.3c01371
摘要

Structure-based virtual screening has been a crucial tool in drug discovery for decades. However, as the chemical space expands, the existing structure-based virtual screening techniques based on molecular docking and scoring struggle to handle billion-entry ultralarge libraries due to the high computational cost. To address this challenge, people have resorted to machine learning techniques to enhance structure-based virtual screening for efficiently exploring the vast chemical space. In those cases, compounds are usually treated as sequential strings or two-dimensional topology graphs, limiting their ability to incorporate three-dimensional structural information for downstream tasks. We herein propose a novel deep learning protocol, GEM-Screen, which utilizes the geometry-enhanced molecular representation of the compounds docking to a specific target and is trained on docking scores of a small fraction of a library through an active learning strategy to approximate the docking outcome for yet nontraining entries. This protocol is applied to virtual screening campaigns against the AmpC and D4 targets, demonstrating that GEM-Screen enriches more than 90% of the hit scaffolds for AmpC in the top 4% of model predictions and more than 80% of the hit scaffolds for D4 in the same top-ranking size of library. GEM-Screen can be used in conjunction with traditional docking programs for docking of only the top-ranked compounds to avoid the exhaustive docking of the whole library, thus allowing for discovering top-scoring compounds from billion-entry libraries in a rapid yet accurate fashion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰激凌UP发布了新的文献求助10
刚刚
机智念芹完成签到 ,获得积分10
刚刚
刚刚
1秒前
Raymond应助su采纳,获得10
1秒前
2秒前
朴素小鸟胃完成签到,获得积分10
2秒前
诗梦完成签到,获得积分10
2秒前
称心的紫萱完成签到,获得积分10
3秒前
3秒前
javalin发布了新的文献求助10
3秒前
4秒前
科研通AI5应助Xiaolei采纳,获得30
4秒前
4秒前
inRe完成签到,获得积分10
4秒前
4秒前
4秒前
叫滚滚完成签到,获得积分10
5秒前
内向秋寒发布了新的文献求助10
5秒前
6秒前
zhui发布了新的文献求助10
6秒前
xia完成签到,获得积分10
6秒前
拈花完成签到,获得积分10
6秒前
6秒前
深情安青应助欧阳小枫采纳,获得10
6秒前
刘芸芸发布了新的文献求助10
7秒前
AOI0504完成签到,获得积分10
7秒前
墨染完成签到,获得积分10
7秒前
薛厌完成签到,获得积分10
8秒前
小橙子发布了新的文献求助10
9秒前
javalin完成签到,获得积分10
9秒前
LiShin发布了新的文献求助10
9秒前
9秒前
9秒前
叫滚滚发布了新的文献求助10
10秒前
坚强的樱发布了新的文献求助10
10秒前
桐桐应助zmmmm采纳,获得10
10秒前
12秒前
小敦发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794