Deep Learning with Geometry-Enhanced Molecular Representation for Augmentation of Large-Scale Docking-Based Virtual Screening

虚拟筛选 对接(动物) 计算机科学 化学空间 药物发现 限制 人工智能 机器学习 化学数据库 码头 生物信息学 化学 工程类 生物 医学 机械工程 生物化学 护理部
作者
Lan Yu,Xiao He,Xiaomin Fang,Lihang Liu,Jinfeng Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6501-6514 被引量:1
标识
DOI:10.1021/acs.jcim.3c01371
摘要

Structure-based virtual screening has been a crucial tool in drug discovery for decades. However, as the chemical space expands, the existing structure-based virtual screening techniques based on molecular docking and scoring struggle to handle billion-entry ultralarge libraries due to the high computational cost. To address this challenge, people have resorted to machine learning techniques to enhance structure-based virtual screening for efficiently exploring the vast chemical space. In those cases, compounds are usually treated as sequential strings or two-dimensional topology graphs, limiting their ability to incorporate three-dimensional structural information for downstream tasks. We herein propose a novel deep learning protocol, GEM-Screen, which utilizes the geometry-enhanced molecular representation of the compounds docking to a specific target and is trained on docking scores of a small fraction of a library through an active learning strategy to approximate the docking outcome for yet nontraining entries. This protocol is applied to virtual screening campaigns against the AmpC and D4 targets, demonstrating that GEM-Screen enriches more than 90% of the hit scaffolds for AmpC in the top 4% of model predictions and more than 80% of the hit scaffolds for D4 in the same top-ranking size of library. GEM-Screen can be used in conjunction with traditional docking programs for docking of only the top-ranked compounds to avoid the exhaustive docking of the whole library, thus allowing for discovering top-scoring compounds from billion-entry libraries in a rapid yet accurate fashion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
125ljw发布了新的文献求助10
1秒前
1秒前
云&fudong给song的求助进行了留言
1秒前
3秒前
要减肥岩完成签到,获得积分10
3秒前
Singularity应助俭朴的天薇采纳,获得10
4秒前
18340312141发布了新的文献求助50
4秒前
Owen应助sgffdhcv采纳,获得10
5秒前
科研学术完成签到,获得积分10
5秒前
文茵完成签到,获得积分10
5秒前
小王不会看文献完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
碳烤小肥肠完成签到,获得积分10
7秒前
8秒前
su发布了新的文献求助10
9秒前
iufan发布了新的文献求助10
9秒前
传奇3应助司徒无剑采纳,获得10
9秒前
LHD完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
11秒前
酷酷初之发布了新的文献求助10
12秒前
胡小壳完成签到,获得积分10
12秒前
12秒前
12秒前
追梦的人发布了新的文献求助30
13秒前
何哈哈发布了新的文献求助10
15秒前
15秒前
wwww完成签到,获得积分10
15秒前
15秒前
Solarenergy完成签到,获得积分0
15秒前
proton完成签到,获得积分10
16秒前
16秒前
zyyao发布了新的文献求助10
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825