Deep Learning with Geometry-Enhanced Molecular Representation for Augmentation of Large-Scale Docking-Based Virtual Screening

虚拟筛选 对接(动物) 计算机科学 化学空间 药物发现 限制 人工智能 机器学习 化学数据库 码头 生物信息学 化学 工程类 生物 医学 机械工程 生物化学 护理部
作者
Lan Yu,Xiao He,Xiaomin Fang,Lihang Liu,Jinfeng Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6501-6514 被引量:8
标识
DOI:10.1021/acs.jcim.3c01371
摘要

Structure-based virtual screening has been a crucial tool in drug discovery for decades. However, as the chemical space expands, the existing structure-based virtual screening techniques based on molecular docking and scoring struggle to handle billion-entry ultralarge libraries due to the high computational cost. To address this challenge, people have resorted to machine learning techniques to enhance structure-based virtual screening for efficiently exploring the vast chemical space. In those cases, compounds are usually treated as sequential strings or two-dimensional topology graphs, limiting their ability to incorporate three-dimensional structural information for downstream tasks. We herein propose a novel deep learning protocol, GEM-Screen, which utilizes the geometry-enhanced molecular representation of the compounds docking to a specific target and is trained on docking scores of a small fraction of a library through an active learning strategy to approximate the docking outcome for yet nontraining entries. This protocol is applied to virtual screening campaigns against the AmpC and D4 targets, demonstrating that GEM-Screen enriches more than 90% of the hit scaffolds for AmpC in the top 4% of model predictions and more than 80% of the hit scaffolds for D4 in the same top-ranking size of library. GEM-Screen can be used in conjunction with traditional docking programs for docking of only the top-ranked compounds to avoid the exhaustive docking of the whole library, thus allowing for discovering top-scoring compounds from billion-entry libraries in a rapid yet accurate fashion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
1秒前
2秒前
4秒前
5秒前
曙光发布了新的文献求助10
5秒前
5秒前
7秒前
yliaoyou完成签到,获得积分10
7秒前
迷人外绣关注了科研通微信公众号
7秒前
8秒前
8秒前
ZZ发布了新的文献求助10
9秒前
雨夜带刀不带伞完成签到 ,获得积分10
9秒前
鄂海菡完成签到,获得积分10
10秒前
拼搏的白云完成签到,获得积分10
10秒前
科研通AI5应助平常的凝蕊采纳,获得10
10秒前
SL发布了新的文献求助10
10秒前
zzzqqq完成签到,获得积分10
12秒前
12秒前
笑点低怀亦完成签到,获得积分10
12秒前
自觉雨灵完成签到,获得积分10
13秒前
北彧发布了新的文献求助10
14秒前
baby完成签到,获得积分10
14秒前
zoe完成签到,获得积分20
15秒前
曙光完成签到,获得积分10
15秒前
mmm发布了新的文献求助10
17秒前
华仔应助SL采纳,获得10
18秒前
赘婿应助小洋采纳,获得10
19秒前
丘比特应助哭泣的薯片采纳,获得10
20秒前
所所应助痴情的秋尽采纳,获得10
21秒前
21秒前
Deng完成签到,获得积分10
24秒前
迷人外绣发布了新的文献求助10
24秒前
大个应助不知似若采纳,获得10
26秒前
26秒前
桑葚啊发布了新的文献求助10
27秒前
27秒前
刻苦的溪流完成签到,获得积分10
29秒前
慕青应助lelele采纳,获得10
29秒前
逆时针应助幽默白竹采纳,获得10
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182