ASTDF-Net: Attention-Based Spatial-Temporal Dual-Stream Fusion Network for EEG-Based Emotion Recognition

判别式 计算机科学 脑电图 人工智能 模式识别(心理学) 互补性(分子生物学) 子空间拓扑 支持向量机 语音识别 机器学习 心理学 精神科 生物 遗传学
作者
Peiliang Gong,Ziyu Jia,Pengpai Wang,Yueying Zhou,Daoqiang Zhang
标识
DOI:10.1145/3581783.3612208
摘要

Emotion recognition based on electroencephalography (EEG) has attracted significant attention and achieved considerable advances in the fields of affective computing and human-computer interaction. However, most existing studies ignore the coupling and complementarity of complex spatiotemporal patterns in EEG signals. Moreover, how to exploit and fuse crucial discriminative aspects in high redundancy and low signal-to-noise ratio EEG signals remains a great challenge for emotion recognition. In this paper, we propose a novel attention-based spatial-temporal dual-stream fusion network, named ASTDF-Net, for EEG-based emotion recognition. Specifically, ASTDF-Net comprises three main stages: first, the collaborative embedding module is designed to learn a joint latent subspace to capture the coupling of complicated spatiotemporal information in EEG signals. Second, stacked parallel spatial and temporal attention streams are employed to extract the most essential discriminative features and filter out redundant task-irrelevant factors. Finally, the hybrid attention-based feature fusion module is proposed to integrate significant features discovered from the dual-stream structure to take full advantage of the complementarity of the diverse characteristics. Extensive experiments on two publicly available emotion recognition datasets indicate that our proposed approach consistently outperforms state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助宁灭龙采纳,获得20
刚刚
刚刚
Owen应助科研通管家采纳,获得10
刚刚
1秒前
hh完成签到,获得积分10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
amberzyc应助科研通管家采纳,获得20
1秒前
zyjwf发布了新的文献求助10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得30
1秒前
清心淡如水完成签到 ,获得积分10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得30
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
peggypan108发布了新的文献求助10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592