Information fusion for multi-scale data: Survey and challenges

粒度 计算机科学 数据挖掘 比例(比率) 一致性(知识库) 领域(数学) 粒度计算 信息系统 信息融合 集合(抽象数据类型) 代表(政治) 粗集 传感器融合 钥匙(锁) 人工智能 数学 工程类 物理 计算机安全 量子力学 政治 法学 政治学 纯数学 电气工程 程序设计语言 操作系统
作者
Qinghua Zhang,Ying Yang,Yunlong Cheng,Guoyin Wang,Weiping Ding,Wei-Zhi Wu,Danilo Pelusi
出处
期刊:Information Fusion [Elsevier BV]
卷期号:100: 101954-101954 被引量:18
标识
DOI:10.1016/j.inffus.2023.101954
摘要

Information fusion is a useful technique of combining and merging different information to form a more complete and accurate result. Traditional information fusion models mainly focus on the single-scale data in which each object has a unique value for any attribute. However, in practice, an object may take on different values under the same attribute, depending on the scale used to measure it. Information fusion of multi-scale data has become a hot topic in the field of intelligent computing. In the past decade, various models and algorithms of multi-scale information fusion (MIF) with rough set theory have been proposed. In this paper, a detailed and comprehensive review about the current research developments of MIF is carried out. First, the multi-scale decision system is introduced to perform the knowledge representation of multi-scale data. On the basis, the classical model of MIF, i.e., the Wu–Leung model, is presented. Second, some MIF models with different information granulation and information fusion strategies are summarized, respectively. Next, for optimal granularity selection, which is the key issue of MIF, existing information measurements interpreting consistency criteria are listed and analyzed, and the common strategies of scale fusion and attribute fusion in optimal granularity selection are summarized. Then, the local MIF and the applications of MIF are reviewed, respectively. Finally, the potential research directions and challenges of MIF are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嗨波发布了新的文献求助10
1秒前
feilu发布了新的文献求助10
1秒前
雾散完成签到,获得积分10
2秒前
2秒前
zxb关闭了zxb文献求助
2秒前
2秒前
2秒前
科目三应助515采纳,获得10
3秒前
只能吃到7分饱完成签到,获得积分10
3秒前
3秒前
3秒前
思源应助ranj采纳,获得10
3秒前
hh完成签到,获得积分10
4秒前
领导范儿应助xiaowang采纳,获得10
4秒前
王文瑾完成签到,获得积分10
4秒前
4秒前
SYLH应助心平气静采纳,获得10
4秒前
HHHAN发布了新的文献求助10
5秒前
酷小裤发布了新的文献求助10
5秒前
办公的牛马完成签到,获得积分10
5秒前
he完成签到,获得积分20
5秒前
852应助llt采纳,获得10
5秒前
Kirito完成签到,获得积分10
5秒前
5秒前
Sodagreen2023发布了新的文献求助10
6秒前
临界发布了新的文献求助10
6秒前
7秒前
Ava应助chenzhezhixp采纳,获得10
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
鸣笛应助科研通管家采纳,获得10
7秒前
tramp应助科研通管家采纳,获得20
7秒前
7秒前
Orange应助科研通管家采纳,获得10
7秒前
科目三应助天黑黑采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953820
求助须知:如何正确求助?哪些是违规求助? 3499685
关于积分的说明 11096658
捐赠科研通 3230222
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801514