A novel semi-empirical model for crop leaf area index retrieval using SAR co- and cross-polarizations

叶面积指数 遥感 合成孔径雷达 环境科学 植被(病理学) 天蓬 反向散射(电子邮件) 含水量 生长季节 经验模型 计算机科学 地理 农学 地质学 医学 电信 岩土工程 考古 病理 无线 生物 程序设计语言
作者
Rong Wang,Jing M. Chen,Li He,Jane Liu,Jiali Shang,Jiangui Liu,Ting Dong
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:296: 113727-113727
标识
DOI:10.1016/j.rse.2023.113727
摘要

The retrieval of continuous leaf area index (LAI) in space and time from remote sensing is beneficial for cropland monitoring and management. Synthetic Aperture Radar (SAR) with the advantages of all-weather operation and fine spatial resolutions has been utilized in various agricultural applications. Although the water cloud model (WCM) has been extensively used for LAI estimation over croplands, it is modified for application to crop canopies with large gaps. The requirement of prior information on soil moisture is also a hinderance for the model application. In this study, WCM is theoretically modified to consider the correlation of active microwave propagation through the canopy in downward and upward directions. Such a modification is particularly important for sparse vegetation with large gaps between crop plants in the early stage of the growing season. A parameter with explicit physical meaning, i.e. the full-vegetation backscattering coefficient, was defined to simplify our model scheme and make the model applicable for the whole growing season. In addition, a physics-based SAR data processing scheme is developed to entangle the influences of LAI and soil moisture on SAR backscatter by taking advantage of the multiple polarizations of RADARSAT-2 (R2) SAR data. In this way, LAI was estimated using modified WCM without the prior knowledge of soil moisture. To evaluate LAI retrieved from the R2 datasets (R2 LAI), ground-based LAI measurements were made at the experimental area of SMAPVEX16-MB in Canada with twenty approximately 800 m х 800 m plots in soybeans and corn. R2 LAI was well correlated to these ground-based LAI (n = 15, R2 = 0.63, RMSE = 0.99 m2·m−2 for soybeans; n = 5, R2 = 0.66, RMSE = 1.20 m2·m−2 for corn). LAI was also retrieved from optical data acquired by Sentinel-2/MSI (S2), denoted as S2 LAI. The R2 LAI and S2 LAI are well correlated and achieved coefficients of determination (R2) of 0.76 and 0.71 and root mean square errors (RMSE) of 1.1 and 1.4 m2·m−2 for soybeans and corn, respectively. The seasonal variations of R2 LAI and S2 LAI are generally similar except at the end of the growing season when S2 LAI is considerably larger than R2 LAI. S2 LAI followed the trend of the reduction in leaf chlorophyll content, while R2 LAI reduced only slightly due to the decrease in leaf water content near the end the growing season. R2 LAI represents the total standing leaf area useful for surface energy balance estimation, while S2 LAI responds to green leaf area useful for crop productivity modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shuai发布了新的文献求助10
1秒前
tutu发布了新的文献求助10
1秒前
阔达的海完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
激昂的问玉完成签到,获得积分10
2秒前
明理的帆布鞋完成签到,获得积分10
3秒前
王佩洋完成签到,获得积分10
3秒前
善学以致用应助Ww采纳,获得30
3秒前
3秒前
小录完成签到 ,获得积分10
4秒前
小柒发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
尉迟富发布了新的文献求助10
4秒前
英俊的铭应助默默采纳,获得10
5秒前
丫丫完成签到,获得积分10
5秒前
灵剑山完成签到 ,获得积分10
5秒前
zhuo发布了新的文献求助10
5秒前
落叶完成签到 ,获得积分0
6秒前
若尘完成签到,获得积分10
6秒前
爆米花应助激昂的问玉采纳,获得10
7秒前
现代的东蒽完成签到,获得积分10
7秒前
自由寻冬发布了新的文献求助10
8秒前
8秒前
8秒前
啦啦啦完成签到,获得积分10
9秒前
耍酷的尔烟完成签到,获得积分10
9秒前
jackwang完成签到,获得积分10
9秒前
芷-完成签到 ,获得积分10
9秒前
Dragon完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
笨鸟先飞完成签到 ,获得积分10
11秒前
big ben完成签到 ,获得积分0
11秒前
yz完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658890
求助须知:如何正确求助?哪些是违规求助? 4824772
关于积分的说明 15083763
捐赠科研通 4817484
什么是DOI,文献DOI怎么找? 2578170
邀请新用户注册赠送积分活动 1532856
关于科研通互助平台的介绍 1491657