Significant wave height prediction based on the local-EMD-WaveNet model

希尔伯特-黄变换 均方误差 卷积(计算机科学) 计算机科学 人工神经网络 卷积神经网络 风速 数学 算法 模式识别(心理学) 人工智能 气象学 统计 物理 白噪声
作者
Tao Lv,Aifeng Tao,Zhen Zhang,Shufang Qin,Gang Wang
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:287: 115900-115900 被引量:5
标识
DOI:10.1016/j.oceaneng.2023.115900
摘要

This research constructed the innovative Local-EMD-WaveNet, a multi-channel neural network model, specifically designed for the prediction of significant wave height (SWH) at a singular point. It leverages Local Empirical Mode Decomposition (EMD) on significant wave heights in Ghanaian waters, integrating the derived decomposition results with wind speed data. This compiled data is then channeled into the model, which exploits the capabilities of dilated causal convolution to capture and analyze the time-series characteristics integral to future SWH predictions. The model ingeniously embeds EMD within the training process, treating the decomposed sub-waves and wind speed sequences as unique channels along the "depth" dimension. Following the application of dilated causal convolution, these channels are systematically "stacked". Compared to conventional LSTM and direct data incorporation methods, Local-EMD-WaveNet consistently outperforms, especially in long-term predictions. The model exhibited significant improvements in Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) during 48 and 56 time-step predictions, marking increases of 27.3% and 23.5%, respectively, outshining both WaveNet and LSTM. Particularly in situations with larger wave height variations, Local-EMD-WaveNet accurately captures waveforms' peaks and troughs. These results validate Local-EMD-WaveNet as a reliable wave forecasting tool with considerable potential in ocean engineering and maritime applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助Xuan采纳,获得10
刚刚
于生有你完成签到,获得积分10
1秒前
脑洞疼应助xmf采纳,获得10
1秒前
1秒前
1秒前
科目三应助以马为梦采纳,获得10
2秒前
不会飞的超人完成签到,获得积分20
2秒前
李健应助yatou5651采纳,获得10
2秒前
2秒前
从容追命完成签到,获得积分20
2秒前
2秒前
2秒前
传奇3应助Wang采纳,获得200
3秒前
3秒前
小胡完成签到,获得积分10
3秒前
晚霞不晚完成签到,获得积分10
4秒前
mobula完成签到,获得积分20
4秒前
于生有你发布了新的文献求助10
4秒前
null驳回了user应助
4秒前
好运连连完成签到,获得积分10
5秒前
5秒前
zjq发布了新的文献求助10
5秒前
Owen应助叶文轩采纳,获得10
5秒前
自然的代亦完成签到,获得积分10
5秒前
6秒前
6秒前
小胡发布了新的文献求助10
6秒前
6秒前
Cc发布了新的文献求助10
6秒前
7秒前
从容追命发布了新的文献求助30
7秒前
淡定发布了新的文献求助10
7秒前
李健应助justin采纳,获得10
8秒前
zero_two完成签到,获得积分10
8秒前
8秒前
逆时针完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646