Significant wave height prediction based on the local-EMD-WaveNet model

希尔伯特-黄变换 均方误差 卷积(计算机科学) 计算机科学 人工神经网络 卷积神经网络 风速 数学 算法 模式识别(心理学) 人工智能 气象学 统计 物理 白噪声
作者
Tao Lv,Aifeng Tao,Zhen Zhang,Shufang Qin,Gang Wang
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:287: 115900-115900 被引量:5
标识
DOI:10.1016/j.oceaneng.2023.115900
摘要

This research constructed the innovative Local-EMD-WaveNet, a multi-channel neural network model, specifically designed for the prediction of significant wave height (SWH) at a singular point. It leverages Local Empirical Mode Decomposition (EMD) on significant wave heights in Ghanaian waters, integrating the derived decomposition results with wind speed data. This compiled data is then channeled into the model, which exploits the capabilities of dilated causal convolution to capture and analyze the time-series characteristics integral to future SWH predictions. The model ingeniously embeds EMD within the training process, treating the decomposed sub-waves and wind speed sequences as unique channels along the "depth" dimension. Following the application of dilated causal convolution, these channels are systematically "stacked". Compared to conventional LSTM and direct data incorporation methods, Local-EMD-WaveNet consistently outperforms, especially in long-term predictions. The model exhibited significant improvements in Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) during 48 and 56 time-step predictions, marking increases of 27.3% and 23.5%, respectively, outshining both WaveNet and LSTM. Particularly in situations with larger wave height variations, Local-EMD-WaveNet accurately captures waveforms' peaks and troughs. These results validate Local-EMD-WaveNet as a reliable wave forecasting tool with considerable potential in ocean engineering and maritime applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜菜发布了新的文献求助10
刚刚
Zx_1993应助nihao采纳,获得10
刚刚
刚刚
汉堡包应助一朵小发发采纳,获得10
刚刚
JASONLIU完成签到 ,获得积分10
1秒前
2秒前
卟噜完成签到,获得积分10
2秒前
lrmachine发布了新的文献求助30
2秒前
小米呀发布了新的文献求助30
3秒前
自由若剑发布了新的文献求助20
3秒前
Orange应助时光友岸采纳,获得10
3秒前
彭于晏应助Yang采纳,获得10
4秒前
4秒前
青塘龙仔发布了新的文献求助10
4秒前
在水一方应助kuikui1100采纳,获得10
4秒前
gaigai完成签到,获得积分10
5秒前
简化为完成签到,获得积分10
5秒前
周周完成签到 ,获得积分10
5秒前
斯文败类应助callmefather采纳,获得10
6秒前
芝麻糊完成签到,获得积分10
6秒前
7秒前
英俊的铭应助mumu采纳,获得10
7秒前
tuotuo完成签到,获得积分10
7秒前
哦哦哦完成签到,获得积分10
7秒前
8秒前
我是老大应助shunyi采纳,获得10
8秒前
俭朴的皮卡丘完成签到,获得积分10
9秒前
kingyuan发布了新的文献求助30
9秒前
9秒前
9秒前
10秒前
曾经的姒发布了新的文献求助10
12秒前
13秒前
AireenBeryl531应助卜念采纳,获得10
13秒前
14秒前
14秒前
rafa发布了新的文献求助10
15秒前
15秒前
所所应助朱颜采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193830
求助须知:如何正确求助?哪些是违规求助? 4376175
关于积分的说明 13628611
捐赠科研通 4231092
什么是DOI,文献DOI怎么找? 2320710
邀请新用户注册赠送积分活动 1319080
关于科研通互助平台的介绍 1269416