Significant wave height prediction based on the local-EMD-WaveNet model

希尔伯特-黄变换 均方误差 卷积(计算机科学) 计算机科学 人工神经网络 卷积神经网络 风速 数学 算法 模式识别(心理学) 人工智能 气象学 统计 物理 白噪声
作者
Tao Lv,Aifeng Tao,Zhen Zhang,Shufang Qin,Gang Wang
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:287: 115900-115900 被引量:5
标识
DOI:10.1016/j.oceaneng.2023.115900
摘要

This research constructed the innovative Local-EMD-WaveNet, a multi-channel neural network model, specifically designed for the prediction of significant wave height (SWH) at a singular point. It leverages Local Empirical Mode Decomposition (EMD) on significant wave heights in Ghanaian waters, integrating the derived decomposition results with wind speed data. This compiled data is then channeled into the model, which exploits the capabilities of dilated causal convolution to capture and analyze the time-series characteristics integral to future SWH predictions. The model ingeniously embeds EMD within the training process, treating the decomposed sub-waves and wind speed sequences as unique channels along the "depth" dimension. Following the application of dilated causal convolution, these channels are systematically "stacked". Compared to conventional LSTM and direct data incorporation methods, Local-EMD-WaveNet consistently outperforms, especially in long-term predictions. The model exhibited significant improvements in Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) during 48 and 56 time-step predictions, marking increases of 27.3% and 23.5%, respectively, outshining both WaveNet and LSTM. Particularly in situations with larger wave height variations, Local-EMD-WaveNet accurately captures waveforms' peaks and troughs. These results validate Local-EMD-WaveNet as a reliable wave forecasting tool with considerable potential in ocean engineering and maritime applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
XC发布了新的文献求助10
2秒前
2秒前
3秒前
爆米花应助化工渣渣采纳,获得10
4秒前
黑暗与黎明完成签到 ,获得积分10
5秒前
晚星完成签到,获得积分10
6秒前
bkagyin应助lpp_采纳,获得10
6秒前
王青青发布了新的文献求助10
6秒前
6秒前
6秒前
zy发布了新的文献求助10
7秒前
灵巧的飞瑶完成签到,获得积分20
7秒前
7秒前
liuxiaomei完成签到,获得积分10
8秒前
9秒前
9秒前
科研通AI2S应助yu采纳,获得10
10秒前
11秒前
gf完成签到,获得积分10
11秒前
11秒前
11秒前
思维隋发布了新的文献求助10
11秒前
化工渣渣发布了新的文献求助10
13秒前
xiaoputaor完成签到 ,获得积分10
14秒前
14秒前
Ava应助Smile采纳,获得10
14秒前
liuxiaomei发布了新的文献求助10
16秒前
合适洋葱发布了新的文献求助10
16秒前
17秒前
Orange应助优秀的枕头采纳,获得10
17秒前
17秒前
淡淡博发布了新的文献求助10
19秒前
chris发布了新的文献求助10
20秒前
化工渣渣发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
皮皮虾完成签到,获得积分10
22秒前
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533801
关于积分的说明 11263775
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806113
邀请新用户注册赠送积分活动 882955
科研通“疑难数据库(出版商)”最低求助积分说明 809629