ACC-UNet: A Completely Convolutional UNet Model for the 2020s

计算机科学 变压器 分割 人工智能 电气工程 电压 工程类
作者
Nabil Ibtehaz,Daisuke Kihara
出处
期刊:Lecture Notes in Computer Science 卷期号:: 692-702
标识
DOI:10.1007/978-3-031-43898-1_66
摘要

This decade is marked by the introduction of Vision Transformer, a radical paradigm shift in broad computer vision. A similar trend is followed in medical imaging, UNet, one of the most influential architectures, has been redesigned with transformers. Recently, the efficacy of convolutional models in vision is being reinvestigated by seminal works such as ConvNext, which elevates a ResNet to Swin Transformer level. Deriving inspiration from this, we aim to improve a purely convolutional UNet model so that it can be on par with the transformer-based models, e.g., Swin-Unet or UCTransNet. We examined several advantages of the transformer-based UNet models, primarily long-range dependencies and cross-level skip connections. We attempted to emulate them through convolution operations and thus propose, ACC-UNet, a completely convolutional UNet model that brings the best of both worlds, the inherent inductive biases of convnets with the design decisions of transformers. ACC-UNet was evaluated on 5 different medical image segmentation benchmarks and consistently outperformed convnets, transformers, and their hybrids. Notably, ACC-UNet outperforms state-of-the-art models Swin-Unet and UCTransNet by $$2.64 \pm 2.54\%$$ and $$0.45 \pm 1.61\%$$ in terms of dice score, respectively, while using a fraction of their parameters ( $$59.26\%$$ and $$24.24\%$$ ). Our codes are available at https://github.com/kiharalab/ACC-UNet .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助爱学习的猫采纳,获得10
刚刚
神经蛙完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
2秒前
2秒前
无情的mm发布了新的文献求助10
3秒前
Vincent发布了新的文献求助10
3秒前
4秒前
DrYang完成签到,获得积分10
4秒前
浅浅完成签到,获得积分20
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
qingmoheng应助djbj2022采纳,获得10
7秒前
喵喵喵完成签到,获得积分10
7秒前
dioyut发布了新的文献求助10
7秒前
小立发布了新的文献求助10
8秒前
天天快乐应助Catalina_S采纳,获得30
8秒前
9秒前
狂野吐司完成签到 ,获得积分10
9秒前
Vincent完成签到,获得积分10
9秒前
9秒前
小马甲应助BO采纳,获得10
9秒前
绿鬼蓝完成签到 ,获得积分10
11秒前
科研通AI6应助可乐采纳,获得10
11秒前
小马甲应助Hhbbb采纳,获得10
11秒前
合适不悔发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
clownnn发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
fenghuo发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
青春梦完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265