ACC-UNet: A Completely Convolutional UNet Model for the 2020s

计算机科学 变压器 分割 人工智能 电气工程 电压 工程类
作者
Nabil Ibtehaz,Daisuke Kihara
出处
期刊:Lecture Notes in Computer Science 卷期号:: 692-702
标识
DOI:10.1007/978-3-031-43898-1_66
摘要

This decade is marked by the introduction of Vision Transformer, a radical paradigm shift in broad computer vision. A similar trend is followed in medical imaging, UNet, one of the most influential architectures, has been redesigned with transformers. Recently, the efficacy of convolutional models in vision is being reinvestigated by seminal works such as ConvNext, which elevates a ResNet to Swin Transformer level. Deriving inspiration from this, we aim to improve a purely convolutional UNet model so that it can be on par with the transformer-based models, e.g., Swin-Unet or UCTransNet. We examined several advantages of the transformer-based UNet models, primarily long-range dependencies and cross-level skip connections. We attempted to emulate them through convolution operations and thus propose, ACC-UNet, a completely convolutional UNet model that brings the best of both worlds, the inherent inductive biases of convnets with the design decisions of transformers. ACC-UNet was evaluated on 5 different medical image segmentation benchmarks and consistently outperformed convnets, transformers, and their hybrids. Notably, ACC-UNet outperforms state-of-the-art models Swin-Unet and UCTransNet by $$2.64 \pm 2.54\%$$ and $$0.45 \pm 1.61\%$$ in terms of dice score, respectively, while using a fraction of their parameters ( $$59.26\%$$ and $$24.24\%$$ ). Our codes are available at https://github.com/kiharalab/ACC-UNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwb发布了新的文献求助10
刚刚
1秒前
3秒前
LHT完成签到,获得积分10
4秒前
落寞凌波发布了新的文献求助10
8秒前
桐桐应助幸福的杨小夕采纳,获得10
13秒前
韩麒嘉完成签到 ,获得积分10
15秒前
聪慧的凝海完成签到 ,获得积分0
24秒前
24秒前
wwb发布了新的文献求助10
27秒前
phil完成签到 ,获得积分10
27秒前
35秒前
高高菠萝完成签到 ,获得积分10
35秒前
滴滴滴完成签到 ,获得积分10
35秒前
yangsi完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
42秒前
酷炫葵阴发布了新的文献求助10
47秒前
ORANGE完成签到,获得积分10
49秒前
思源应助松松采纳,获得20
53秒前
共享精神应助酷炫葵阴采纳,获得10
55秒前
丝丢皮得完成签到 ,获得积分10
56秒前
57秒前
xfy完成签到,获得积分10
1分钟前
阳炎完成签到,获得积分10
1分钟前
行云流水完成签到,获得积分10
1分钟前
1分钟前
冷酷尔琴发布了新的文献求助10
1分钟前
青水完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
冷酷尔琴完成签到,获得积分10
1分钟前
onevip完成签到,获得积分0
1分钟前
小莫完成签到 ,获得积分10
1分钟前
1分钟前
theseus完成签到,获得积分10
1分钟前
胡楠完成签到,获得积分10
1分钟前
北国雪未消完成签到 ,获得积分10
1分钟前
李振博完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022