LC-MS/MS based metabolomic analysis of serum from patients with cerebrovascular stenosis

代谢组学 化学 代谢组 串联质谱法 内科学 多元分析 医学 胃肠病学 质谱法 色谱法
作者
Dezhi Shan,Dingkang Xu,Shen Hu,Peng Qi,Jun Lu,Daming Wang
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:235: 115608-115608 被引量:1
标识
DOI:10.1016/j.jpba.2023.115608
摘要

Cerebrovascular stenosis (CVS) is the main cause of ischemic stroke, which greatly threatens human life. Hence, it's important to perform early screenings for CVS. Metabolomics is an emerging omics approach that has great advantages in disease screening and diagnosis. Therefore, we aim to elucidate the correlation between CVS and metabolomics, which can aid in conducting CVS screening at an early stage. Patients with CVS in Beijing Hospital were included in the study. A total of 36 participants, including 18 patients diagnosed with CVS and 18 healthy individuals, were recruited at Beijing Hospital between May 2022 and October 2021. The serum samples were analyzed for liquid chromatography-tandem mass spectrometry (LC-MS/MS). Then, multivariate statistical methods, including principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed. Differential metabolites were obtained and demonstrated by volcano plot and heatmap. The study recruited 36 participants, including 18 patients with CVS and 18 healthy participants. A total of 150 metabolites were identified. Multivariate statistical analysis revealed significant differences between patients and healthy participants. Furthermore, 30 serum metabolites levels differed significantly between two groups. Differential metabolites were enriched in phenylalanine, tyrosine, and tryptophan biosynthesis; primary bile acid biosynthesis, and other pathways. This study identified differential metabolites in patients with CVS and elucidated the relevant metabolic pathways. Thus, these findings aid in the study of the pathogenesis of CVS and its early diagnosis. DATA AVAILABILITY STATEMENT: The datasets generated for this study are available on request to the corresponding author.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Amy发布了新的文献求助10
刚刚
demoestar完成签到 ,获得积分10
1秒前
科研通AI5应助见青山采纳,获得10
1秒前
ddd完成签到,获得积分10
1秒前
1秒前
1秒前
华仔应助独行远去采纳,获得10
1秒前
DO应助不待雨停采纳,获得10
2秒前
芒果椿发布了新的文献求助10
3秒前
DDDD源发布了新的文献求助10
3秒前
LXG666发布了新的文献求助10
3秒前
丘比特应助JMrider采纳,获得10
3秒前
可爱的高丽完成签到 ,获得积分10
3秒前
酷波er应助puding26采纳,获得10
5秒前
香蕉念蕾发布了新的文献求助10
5秒前
于于发布了新的文献求助10
6秒前
哈哈哈应助怕孤独的从雪采纳,获得10
8秒前
8秒前
Amy完成签到,获得积分10
9秒前
10秒前
大白菜完成签到 ,获得积分10
10秒前
快乐慕灵完成签到,获得积分10
11秒前
Orange应助starry采纳,获得10
12秒前
12秒前
科目三应助诺一44采纳,获得30
12秒前
快帮我找找完成签到,获得积分10
13秒前
13秒前
L~完成签到,获得积分10
15秒前
Tina发布了新的文献求助30
15秒前
汉堡包应助李庆采纳,获得10
16秒前
16秒前
见青山发布了新的文献求助10
18秒前
20秒前
20秒前
上官若男应助DIY101采纳,获得10
21秒前
nihau发布了新的文献求助10
21秒前
Singularity应助ddl采纳,获得10
21秒前
落霞与孤鹜齐飞完成签到,获得积分10
21秒前
22秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Exploring the effects of an evidenced-based professional development programme on teaching and learning in Chinese kindergartens 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3576516
求助须知:如何正确求助?哪些是违规求助? 3146501
关于积分的说明 9465459
捐赠科研通 2848050
什么是DOI,文献DOI怎么找? 1565422
邀请新用户注册赠送积分活动 733021
科研通“疑难数据库(出版商)”最低求助积分说明 719534