A data expansion technique based on training and testing sample to boost the detection of SSVEPs for brain-computer interfaces

脑-机接口 计算机科学 过度拟合 人工智能 脑电图 机器学习 模式识别(心理学) 语音识别 人工神经网络 心理学 精神科
作者
Xiaolin Xiao,Lijie Wang,Minpeng Xu,Kun Wang,Tzyy‐Ping Jung,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066017-066017 被引量:3
标识
DOI:10.1088/1741-2552/acf7f6
摘要

Abstract Objective. Currently, steady-state visual evoked potentials (SSVEPs)-based brain-computer interfaces (BCIs) have achieved the highest interaction accuracy and speed among all BCI paradigms. However, its decoding efficacy depends deeply on the number of training samples, and the system performance would have a dramatic drop when the training dataset decreased to a small size. To date, no study has been reported to incorporate the unsupervised learning information from testing trails into the construction of supervised classification model, which is a potential way to mitigate the overfitting effect of limited samples. Approach. This study proposed a novel method for SSVEPs detection, i.e. cyclic shift trials (CSTs), which could combine unsupervised learning information from test trials and supervised learning information from train trials. Furthermore, since SSVEPs are time-locked and phase-locked to the onset of specific flashes, CST could also expand training samples on the basis of its regularity and periodicity. In order to verify the effectiveness of CST, we designed an online SSVEP-BCI system, and tested this system combined CST with two common classification algorithms, i.e. extended canonical correlation analysis and ensemble task-related component analysis. Main results. CST could significantly enhance the signal to noise ratios of SSVEPs and improve the performance of systems especially for the condition of few training samples and short stimulus time. The online information transfer rate could reach up to 236.19 bits min −1 using 36 s calibration time of only one training sample for each category. Significance. The proposed CST method can take full advantages of supervised learning information from training samples and unsupervised learning information of testing samples. Furthermore, it is a data expansion technique, which can enhance the SSVEP characteristics and reduce dependence on sample size. Above all, CST is a promising method to improve the performance of SSVEP-based BCI without any additional experimental burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123123完成签到 ,获得积分10
刚刚
SciGPT应助伊酒采纳,获得10
1秒前
何糖发布了新的文献求助10
2秒前
ding应助SEV采纳,获得10
2秒前
田様应助csq采纳,获得10
2秒前
dafwfwaf发布了新的文献求助10
2秒前
2秒前
景别完成签到,获得积分10
3秒前
彭于晏应助zhappy采纳,获得20
3秒前
4秒前
xg发布了新的文献求助10
4秒前
5秒前
Tophet完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
FashionBoy应助落落采纳,获得10
7秒前
活力的青枫完成签到 ,获得积分10
7秒前
苏素肃发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
空禅yew发布了新的文献求助10
9秒前
汉堡包应助花开的声音1217采纳,获得10
9秒前
ying发布了新的文献求助10
9秒前
animenz完成签到,获得积分10
10秒前
tY发布了新的文献求助10
11秒前
OJL发布了新的文献求助10
11秒前
11秒前
11秒前
柒柒完成签到,获得积分10
11秒前
丘比特应助111采纳,获得10
12秒前
13秒前
13秒前
XShu完成签到,获得积分20
13秒前
xx完成签到 ,获得积分10
14秒前
羊知鱼完成签到,获得积分10
15秒前
公茂源发布了新的文献求助30
15秒前
搞怪不言发布了新的文献求助10
16秒前
DDDD完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808