脑-机接口
计算机科学
过度拟合
人工智能
脑电图
机器学习
模式识别(心理学)
语音识别
人工神经网络
心理学
精神科
作者
Xiaolin Xiao,Lijie Wang,Minpeng Xu,Kun Wang,Tzyy‐Ping Jung,Dong Ming
出处
期刊:Journal of Neural Engineering
[IOP Publishing]
日期:2023-09-08
卷期号:20 (6): 066017-066017
被引量:3
标识
DOI:10.1088/1741-2552/acf7f6
摘要
Abstract Objective. Currently, steady-state visual evoked potentials (SSVEPs)-based brain-computer interfaces (BCIs) have achieved the highest interaction accuracy and speed among all BCI paradigms. However, its decoding efficacy depends deeply on the number of training samples, and the system performance would have a dramatic drop when the training dataset decreased to a small size. To date, no study has been reported to incorporate the unsupervised learning information from testing trails into the construction of supervised classification model, which is a potential way to mitigate the overfitting effect of limited samples. Approach. This study proposed a novel method for SSVEPs detection, i.e. cyclic shift trials (CSTs), which could combine unsupervised learning information from test trials and supervised learning information from train trials. Furthermore, since SSVEPs are time-locked and phase-locked to the onset of specific flashes, CST could also expand training samples on the basis of its regularity and periodicity. In order to verify the effectiveness of CST, we designed an online SSVEP-BCI system, and tested this system combined CST with two common classification algorithms, i.e. extended canonical correlation analysis and ensemble task-related component analysis. Main results. CST could significantly enhance the signal to noise ratios of SSVEPs and improve the performance of systems especially for the condition of few training samples and short stimulus time. The online information transfer rate could reach up to 236.19 bits min −1 using 36 s calibration time of only one training sample for each category. Significance. The proposed CST method can take full advantages of supervised learning information from training samples and unsupervised learning information of testing samples. Furthermore, it is a data expansion technique, which can enhance the SSVEP characteristics and reduce dependence on sample size. Above all, CST is a promising method to improve the performance of SSVEP-based BCI without any additional experimental burden.
科研通智能强力驱动
Strongly Powered by AbleSci AI