A data expansion technique based on training and testing sample to boost the detection of SSVEPs for brain-computer interfaces

脑-机接口 计算机科学 过度拟合 人工智能 脑电图 机器学习 模式识别(心理学) 语音识别 人工神经网络 心理学 精神科
作者
Xiaolin Xiao,Lijie Wang,Minpeng Xu,Kun Wang,Tzyy‐Ping Jung,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066017-066017 被引量:3
标识
DOI:10.1088/1741-2552/acf7f6
摘要

Abstract Objective. Currently, steady-state visual evoked potentials (SSVEPs)-based brain-computer interfaces (BCIs) have achieved the highest interaction accuracy and speed among all BCI paradigms. However, its decoding efficacy depends deeply on the number of training samples, and the system performance would have a dramatic drop when the training dataset decreased to a small size. To date, no study has been reported to incorporate the unsupervised learning information from testing trails into the construction of supervised classification model, which is a potential way to mitigate the overfitting effect of limited samples. Approach. This study proposed a novel method for SSVEPs detection, i.e. cyclic shift trials (CSTs), which could combine unsupervised learning information from test trials and supervised learning information from train trials. Furthermore, since SSVEPs are time-locked and phase-locked to the onset of specific flashes, CST could also expand training samples on the basis of its regularity and periodicity. In order to verify the effectiveness of CST, we designed an online SSVEP-BCI system, and tested this system combined CST with two common classification algorithms, i.e. extended canonical correlation analysis and ensemble task-related component analysis. Main results. CST could significantly enhance the signal to noise ratios of SSVEPs and improve the performance of systems especially for the condition of few training samples and short stimulus time. The online information transfer rate could reach up to 236.19 bits min −1 using 36 s calibration time of only one training sample for each category. Significance. The proposed CST method can take full advantages of supervised learning information from training samples and unsupervised learning information of testing samples. Furthermore, it is a data expansion technique, which can enhance the SSVEP characteristics and reduce dependence on sample size. Above all, CST is a promising method to improve the performance of SSVEP-based BCI without any additional experimental burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KUZMA完成签到,获得积分10
1秒前
4秒前
清溪鱼唱完成签到,获得积分10
4秒前
图雄争霸完成签到 ,获得积分10
4秒前
邪恶花生米完成签到 ,获得积分10
4秒前
星期三不调闹钟完成签到 ,获得积分10
5秒前
我是老大应助神海采纳,获得10
6秒前
7秒前
李爱国应助清溪鱼唱采纳,获得10
10秒前
12秒前
12秒前
受伤翠容发布了新的文献求助10
15秒前
太阳花发布了新的文献求助10
16秒前
17秒前
刻苦的黑米完成签到,获得积分10
21秒前
英俊的铭应助受伤翠容采纳,获得10
23秒前
卡皮巴拉完成签到,获得积分10
24秒前
希望天下0贩的0应助Yxy2021采纳,获得10
24秒前
丘比特应助范白白采纳,获得10
25秒前
27秒前
松林发布了新的文献求助10
27秒前
感动清炎完成签到,获得积分10
29秒前
miku完成签到 ,获得积分10
30秒前
zhuhaot发布了新的文献求助50
30秒前
活泼万言发布了新的文献求助10
35秒前
ding应助QYPANG采纳,获得10
36秒前
yx_cheng应助松林采纳,获得20
37秒前
39秒前
40秒前
打打应助星沉静默采纳,获得10
41秒前
43秒前
李爱国应助淡定海亦采纳,获得10
44秒前
45秒前
46秒前
49秒前
Zjx发布了新的文献求助10
49秒前
成功完成签到,获得积分10
50秒前
53秒前
54秒前
57秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993104
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264385
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652