A data expansion technique based on training and testing sample to boost the detection of SSVEPs for brain-computer interfaces

脑-机接口 计算机科学 过度拟合 人工智能 脑电图 机器学习 模式识别(心理学) 语音识别 人工神经网络 心理学 精神科
作者
Xiaolin Xiao,Lijie Wang,Minpeng Xu,Kun Wang,Tzyy‐Ping Jung,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066017-066017 被引量:3
标识
DOI:10.1088/1741-2552/acf7f6
摘要

Abstract Objective. Currently, steady-state visual evoked potentials (SSVEPs)-based brain-computer interfaces (BCIs) have achieved the highest interaction accuracy and speed among all BCI paradigms. However, its decoding efficacy depends deeply on the number of training samples, and the system performance would have a dramatic drop when the training dataset decreased to a small size. To date, no study has been reported to incorporate the unsupervised learning information from testing trails into the construction of supervised classification model, which is a potential way to mitigate the overfitting effect of limited samples. Approach. This study proposed a novel method for SSVEPs detection, i.e. cyclic shift trials (CSTs), which could combine unsupervised learning information from test trials and supervised learning information from train trials. Furthermore, since SSVEPs are time-locked and phase-locked to the onset of specific flashes, CST could also expand training samples on the basis of its regularity and periodicity. In order to verify the effectiveness of CST, we designed an online SSVEP-BCI system, and tested this system combined CST with two common classification algorithms, i.e. extended canonical correlation analysis and ensemble task-related component analysis. Main results. CST could significantly enhance the signal to noise ratios of SSVEPs and improve the performance of systems especially for the condition of few training samples and short stimulus time. The online information transfer rate could reach up to 236.19 bits min −1 using 36 s calibration time of only one training sample for each category. Significance. The proposed CST method can take full advantages of supervised learning information from training samples and unsupervised learning information of testing samples. Furthermore, it is a data expansion technique, which can enhance the SSVEP characteristics and reduce dependence on sample size. Above all, CST is a promising method to improve the performance of SSVEP-based BCI without any additional experimental burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mochi发布了新的文献求助10
1秒前
烤冷面应助Candice采纳,获得10
1秒前
2秒前
ALL发布了新的文献求助10
3秒前
大模型应助青筠采纳,获得10
3秒前
durian发布了新的文献求助10
3秒前
4秒前
冷酷向薇发布了新的文献求助10
5秒前
丫丫完成签到 ,获得积分20
5秒前
5秒前
扶摇完成签到 ,获得积分10
5秒前
闵卷完成签到,获得积分10
5秒前
且徐行完成签到,获得积分10
6秒前
怡然太阳发布了新的文献求助10
6秒前
HC发布了新的文献求助30
6秒前
JACKPAN给JACKPAN的求助进行了留言
7秒前
米米发布了新的文献求助10
7秒前
精明凡雁发布了新的文献求助10
7秒前
852应助goofs采纳,获得10
7秒前
shuai_guo完成签到,获得积分10
8秒前
mochi完成签到,获得积分10
9秒前
9秒前
9秒前
善学以致用应助猪猪hero采纳,获得10
9秒前
Jay发布了新的文献求助50
9秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
P_Chem发布了新的文献求助150
11秒前
12秒前
13秒前
李健的粉丝团团长应助ACE采纳,获得10
13秒前
共享精神应助HC采纳,获得10
14秒前
讨厌的十九岁完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
16秒前
水煮牛肉火锅完成签到,获得积分10
16秒前
彭于晏应助愿景采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089228
求助须知:如何正确求助?哪些是违规求助? 4304013
关于积分的说明 13413247
捐赠科研通 4129680
什么是DOI,文献DOI怎么找? 2261670
邀请新用户注册赠送积分活动 1265742
关于科研通互助平台的介绍 1200344