A data expansion technique based on training and testing sample to boost the detection of SSVEPs for brain-computer interfaces

脑-机接口 计算机科学 过度拟合 人工智能 脑电图 机器学习 模式识别(心理学) 语音识别 人工神经网络 心理学 精神科
作者
Xiaolin Xiao,Lijie Wang,Minpeng Xu,Kun Wang,Tzyy‐Ping Jung,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066017-066017 被引量:3
标识
DOI:10.1088/1741-2552/acf7f6
摘要

Abstract Objective. Currently, steady-state visual evoked potentials (SSVEPs)-based brain-computer interfaces (BCIs) have achieved the highest interaction accuracy and speed among all BCI paradigms. However, its decoding efficacy depends deeply on the number of training samples, and the system performance would have a dramatic drop when the training dataset decreased to a small size. To date, no study has been reported to incorporate the unsupervised learning information from testing trails into the construction of supervised classification model, which is a potential way to mitigate the overfitting effect of limited samples. Approach. This study proposed a novel method for SSVEPs detection, i.e. cyclic shift trials (CSTs), which could combine unsupervised learning information from test trials and supervised learning information from train trials. Furthermore, since SSVEPs are time-locked and phase-locked to the onset of specific flashes, CST could also expand training samples on the basis of its regularity and periodicity. In order to verify the effectiveness of CST, we designed an online SSVEP-BCI system, and tested this system combined CST with two common classification algorithms, i.e. extended canonical correlation analysis and ensemble task-related component analysis. Main results. CST could significantly enhance the signal to noise ratios of SSVEPs and improve the performance of systems especially for the condition of few training samples and short stimulus time. The online information transfer rate could reach up to 236.19 bits min −1 using 36 s calibration time of only one training sample for each category. Significance. The proposed CST method can take full advantages of supervised learning information from training samples and unsupervised learning information of testing samples. Furthermore, it is a data expansion technique, which can enhance the SSVEP characteristics and reduce dependence on sample size. Above all, CST is a promising method to improve the performance of SSVEP-based BCI without any additional experimental burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈民完成签到,获得积分20
刚刚
1秒前
L_x完成签到 ,获得积分10
2秒前
体贴花卷发布了新的文献求助10
2秒前
科研小狗发布了新的文献求助10
2秒前
2秒前
3秒前
小酒窝发布了新的文献求助10
3秒前
amo发布了新的文献求助10
3秒前
登峰造极发布了新的文献求助30
4秒前
4秒前
个性的大白菜真实的钥匙完成签到 ,获得积分10
5秒前
跳跃的摩托完成签到 ,获得积分10
6秒前
PONY发布了新的文献求助10
6秒前
7秒前
璐璐完成签到 ,获得积分10
7秒前
7秒前
8秒前
安静碧灵发布了新的文献求助10
8秒前
虚幻的璟完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
居居子完成签到,获得积分10
10秒前
华仔应助贤惠的面包采纳,获得10
11秒前
chengymao完成签到,获得积分10
11秒前
11秒前
IAMXC发布了新的文献求助200
12秒前
披风发布了新的文献求助50
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
酷波er应助七十二莳采纳,获得10
14秒前
bkagyin应助anlin采纳,获得10
14秒前
14秒前
Max完成签到,获得积分10
15秒前
躺赢完成签到 ,获得积分10
15秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147491
求助须知:如何正确求助?哪些是违规求助? 2798710
关于积分的说明 7830633
捐赠科研通 2455455
什么是DOI,文献DOI怎么找? 1306817
科研通“疑难数据库(出版商)”最低求助积分说明 627917
版权声明 601587